TED (21) 5012	
(Revision - 2021)	

2109230004B

Reg.No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

DESIGN OF STEEL AND RCC STRUCTURES

[Maximum marks: 75] [Time: 3 Hours]

[Note – Use of IS 456-2000, IS 800-2007, SP16 and Steel tables are permitted. Any missing data may be suitably assumed.]

PART A

		outcome	level
1	Rupture of net section of a tension member is decided by its	M1.01	R
	strength.		
2	As per IS800-2007, the effective length of a compression member is	M1.02	R
	times its actual length, if one ends is restrained against		
	translation or rotation, while the other end is free to translate/rotate.		
3	List any one example of a built-up column.	M1.03	R
4	The moment corresponding to which the extreme fibres just yield is	M2.01	R
	called		
5	section is otherwise known as Class 4 cross-section.	M2.02	R
6	Define Balanced section.	M3.02	R
7	Partial safety factor for steel is	M3.01	R
8	As per IS456-2000, columns should have a minimum longitudinal	M4.01	R
	reinforcement of%		
9	List the two types of shear which the design of an isolated footing	M4.02	R
	shall necessarily satisfy.		

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module outcome	Cognitive level
1	Write down the equation for net section rupture of single angle	M1.01	R
	Tension Members.		
2	Write three codal provisions to determine effective length of	M1.03	U
	compression members, as per IS 800-2007.		

3	Draw a neat sketch of Laced column.	M1.04	U
4	Compare Plastic and Compact cross-sections, as per IS 800-2007.	M2.01	R
5	Write the codal provisions for deflection limits in the design of	M2.01	U
	laterally supported beams, according to IS 800-2007.		
6	Explain the concept of Limit State of Collapse.	M3.01	R
7	Differentiate Under-reinforced and Over-reinforced beams.	M3.02	U
8	Compare short column and long column.	M4.01	U
9	List any three types of isolated footings.	M4.03	R
10	Sketch the critical sections about which the check for one-way shear	M4.04	U
	and two-way shear are performed.		

 $\begin{array}{c} \textbf{PART C} \\ \textbf{Answer all questions. Each question carries seven marks.} \end{array}$

 $\begin{array}{|c|c|c|c|c|} \hline (6 \times 7 = 42 \text{ Marks}) \\ \hline \text{Module} & \text{Cognitive} \\ \hline \end{array}$

		Module outcome	Cognitive level
III	Determine the tensile strength of a roof tie double-angle ISA	M1.02	A
	90x60x6 mm connected to a gusset plate by weld over 200mm		
	length. Take $f_y = 250 \text{ N/mm}^2$ and $f_u = 410 \text{ N/mm}^2$.		
	OR		
IV	Write short notes on:	M1.01	U
	(a) Gross section yielding (b) Net section Rupture		
V	Calculate design strength due to yielding of gross section for an	M1.01	A
	angle ISA 150 x 115 x 8 mm. It is connected to gusset plate by weld		
	over a length of 140mm. Take $f_y = 250 \text{ N/mm}^2$ and $f_u = 410 \text{ N/mm}^2$.		
	OR		
VI	Write the procedure for design of double - angle compression	M1.02	U
	members.		
VII	Calculate the Plastic moment carrying capacity of a given I-section	M2.01	U
	about z-z axis shown in figure. Take $f_y = 250 \text{ N/mm}^2$. All		
	dimensions in mm.		
	7.5 Z		

Page 2 of 3

	OR		
VIII	Write the procedure to determine Bending strength of laterally	M2.03	U
	supported steel beams.		
IX	Calculate the Ultimate Moment of resistance of a beam section	M3.01	A
	200mm wide and 400 mm effective depth. It is reinforced with		
	4 bars of 16mm dia. Use Fe250 grade steel and M20 grade concrete.		
	OR		
X	Write the detailed procedure for the Design of a one-way simply	M3.02	U
	supported slab.		
XI	An RCC beam 250 x 400mm effective depth having 4.33m effective	M3.04	A
	span. It is subjected to Uniformly Distributed Load 40kN/m		
	throughout the span. The beam is reinforced with 2 bars of 25mm		
	dia on tension side. Check for shear and design shear		
	reinforcements if necessary. Use M20 concrete and Fe415 steel.		
	OR		
XII	Write the detailed procedure for the Design of a two-way simply	M3.04	U
	supported slab.		
XIII	Calculate the longitudinal reinforcement for a short circular column	M4.01	U
	of diameter 500mm loaded axially by 2000 kN. Use M20 concrete		
	and Fe415 steel.		
	OR		
XIV	Determine the depth of a square footing for a short axially loaded	M4.02	U
	column 300mm x 300mm carrying 600kN ultimate load, based on		
	one-way shear. Use M20 concrete and Fe415 steel. Safe Bearing		
	Capacity of soil is 180kN/m ² .		
