TED (21)4	1011
(Revision	- 2021)

2103230194

Reg.	No.	•••	•••	•	••	 •	•	 •	•	•	•	•	• •	
Sign	atur	e				 								

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2025

GEOTECHNICAL ENGINEERING

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer 'all' the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cognitive level
1.	Soil Transported from their origin and deposited through still water	M1.01	R
	like lakes are called		
2.	A soil with consistency index of zero is atlimit.	M1.04	R
3.	State Darcy's law.	M2.02	R
4.	In a relatively more permeable soil method of permeability	M2.02	R
	test is most suited.		
5.	Name the field test adopted for computing the shear strength of soft	M2.04	R
	clays.		
6.	List any two-field method of compaction.	M3.03	R
7.	Define consolidation of soil.	M3.04	R
8.	List the two geophysical methods of soil exploration.	M4.03	R
9.	List any two-field method to compute the bearing capacity of the soil.	M4.06	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks. $(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

1.	Sketch three phase system of soil mass and represent the parameters.	M1.02	R
2.	List the factors affecting permeability.	M2.01	R
3.	Describe Mohr-Coulomb failure theory.	M2.03	U
4.	Detail the procedure for conducting vane shear test.	M2.04	U
5.	Describe stages of consolidation.	M3.04	U
6.	List methods adopted for Field compaction.	M3.03	R
7.	Distinguish compaction and consolidation of soil.	M3.05	U
8.	List the objectives of soil investigation.	M4.01	R
9.	Differentiate disturbed and undisturbed samples in soil exploration.	M4.02	U
10.	Define terms- (1) Gross safe bearing capacity (2) Ultimate bearing capacity (3) Net safe bearing capacity.	M4.04	R

 ${\bf PART-C}$ Answer 'all' questions from the following. Each question carries 'seven' marks.

 $(6 \times 7 = 42 \text{ Marks})$

	,	Module Outcome	Cognitive level
III.	A soil specimen has a water content of 10% and a wet unit weight of	M1.02	A
	20kN/m. If the specific gravity of the solid is 2.7, determine the dry		
	unit weight, voids ratio and degree of saturation. Take - 10kN/m ² .		
	OR		
IV.	Explain the procedure for finding field density of soil by sand	M1.03	U
	replacement method.		
V.	A fully saturated clay has a water content 30% and bulk unit weight	M1.02	A
	at 18.64 kN/m. After drying the dry unit weight is 17.66 kN/m.		
	Find: (i) The specific gravity of soil (ii) Shrinkage limit for the clay.		
	OR		
VI.	Explain the procedure for determining liquid limit.	M1.04	U
VII.	Describe falling head method for finding permeability of soil.	M2.02	U
	OR		
VIII.	Explain Procedure for determining the shear strength by vane Shear	M2.04	U
	test.		
IX.	Discuss the different field methods of compaction.	M3.03	U
	OR		
X.	Explain the Plate load test with neat sketch.	M3.04	U
XI.	Describe the Split Spoon Sampler and its use.	M4.03	U
	OR		
XII.	Explain the parts of a well foundation.	M4.08	U
XIII.	Illustrate different types of shallow foundations with sketches.	M4.08	U
	OR		
XIV.	Explain the procedure for determination bearing capacity of soil	M4.06	U
	by Standard Penetration test.		
