Page 1 of 3

TED (21)5033A (Revision - 2021)

> **DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/** MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2025

2109230058

RENEWABLE ENERGY POWER PLANTS

[Maximum Marks: 75]

PART-A

I. Answer 'all' the following questions in one word or one sentence. Each question carries 'one' mark.

			$(9 \times 1 = 9)$ Module Outcome	
1.	Name the type of	f turbine used in high head hydro power plants.	M1.02	R
2.	Define the term	biomass.	M1.04	R
3.	Define the term	solar irradiation.	M2.01	R
4.	Write any one fu	nction of charge controller in solar power plants.	M2.03	R
5.	State the differen	nce between solar cell and solar module.	M2.03	R
6.	Name any one ty	pe of electric generator used in wind power plants.	M3.03	R
7.	Match the components with their functions in wind energy system.		M3.02	R
	(A) Generator	a. Kinetic energy to mechanical energy		
	(B) Turbine	b. Mechanical energy to electrical energy		
		c. Electrical energy to mechanical energy		
8.	List any two type from oceans.	es of energy conversion methods to harvest energy	M4.01	R
9.		reaction formula at anode of a hydrogen oxygen fuel	M4.03	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks. $(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

1.	Define biogas and list it constituents	M1.04	R
2.	State the basic concepts of the following:	M2.03	R
	A) Building integrated type solar energy system		
	B) Solar power satellite		
3.	Explain the operation of parabolic trough solar collectors.	M2.02	U
4.	List out any three criterions for selection of site for wind power plant.	M3.01	R
5.	A 60 m diameter wind turbine runs at a speed of 5.4 m/s. Calculate the	M3.03	А
	power output of the turbine. Assume the air density as 1.226 kg/m^3		
6.	Draw the block diagram representation of constant speed constant	M3.04	R
	frequency electric power generation scheme from wind.		

Reg. No..... Signature.....

[Time: **3** Hours]

 $(9 \times 1 - 9 \text{ Marks})$

7.	Draw the block diagram representation of grid connected wind	M3.03	R
	power plant		
8.	Describe the operation of oscillating water coloumn type ocean wave	M4.01	U
	energy conversion system.		
9.	Explain the working principle of ocean thermal energy conversion	M4.02	U
	system.		
10.	List out any three advantages and disadvantages of tidal power plants.	M4.01	R

PART-C

Answer 'all' questions from the following. Each question carries 'seven' marks.

(6 x 7 = 42 Marks)

		Module Outcome	Cognitive level
III.	Explain the operation of vapour dominated geothermal power plant	M1.03	U
	with the help of block diagram.		
	OR		
IV.	Draw the schematic diagram and identify the function of each	M1.02	U
	component in a small hydro power plants.		
V.	Explain different biomass conversion processes.	M1.04	U
	OR		_
VI.	Distinguish between conventional and non conventional energy	M1.01	U
, 1,	sources with the help of examples.	1,11,01	C
VII.	Illustrate the construction and working of solar cells.	M2.03	U
, 11.	OR	1012.03	U
VIII	Describe the operation of buck converter with the help of circuit	M2.03	U
v III.	diagram.	112.05	U
IX.	Solar system is installed in a house for night time to meet the	M2.04	A
17.	•	WIZ.04	A
	following loads for a duration of 10 hours per day. 1. Ten 40 w LED		
	lamps 2. Four 80w ceiling fans		
	Calculate:		
	i) inverter rating to meet the load		
	ii) Ampere hour rating of battery if battery voltage is 12V		
	and efficiency of 90% and rate of discharge of 80%.		
	iii) no of 200 Wp solar panels required if panel generation		
	factor is 4.		
	OR		
Χ.	If solar system contains a battery of rating 12V, 150 Ah and needs a	M2.04	А
	charging current of 20A. If the rating of individual solar panel is		
	250W find		
	A. Back up period of system for a day if it is used to drive a		
	load of 1000W.		
	B. Total no of panels to be connected in the system.		
l	1	1	

XI.	Compare horizontal axis and vertical axis wind turbine based on any	M1.02	U
	five aspects.		
	OR		
XII.	Explain the operation of stand alone type wind power plant with the	M3.03	U
	help of block diagram.		
XIII.	Draw the block diagram and describe the operation of magneto hydro	M4.04	U
	dynamic power plant.		
	OR		
XIV.	Compare battery and fuel cell based on any five aspects.	M4.03	U
