TED (21) 5031	
(Revision - 2021)	

2109230051A

Reg.No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

SYNCHRONOUS MACHINES & FHP MOTORS

[Maximum marks: 75] [Time: 3 Hours]

PART A I. Answer all the following questions in one word or one sentence. Each question carries 1 mark. $(9 \times 1 = 9 \text{ Marks})$

		Module outcome	Cognitive level
1	List the types of alternator based on rotor type.	M1.01	R
2	Write the equation for pitch factor.	M1.02	R
3	Match the following based on their effect of armature reaction:	M1.03	U
	(i) ZPF Lag (a) Purely Magnetization		
	(ii) ZPF Lead (b) Purely Cross Magnetization		
	(iii) UPF (c) Purely Demagnetization		
4	Enumerate any two methods for pre-determining voltage regulation.	M2.01	R
5	Name the equipment used for synchronization.	M2.04	R
6	The inverted V curve is the plot between in X axis and	M3.02	U
	in Y axis.		
7	Name the type of excitation of a synchronous condenser.	M3.04	R
8	List any two modes of operation of Variable Reluctance Motor.	M4.03	R
9	Write the equation for step angle of a stepper motor.	M4.03	R

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		(OAU	· · · · · · · · · · · · · · · · · · ·
		Module	Cognitive
		outcome	level
1	Enlist any three advantages of stationary armature construction.	M1.01	R
2	Enumerate the conditions for smooth parallel operation of	M2.03	R
	alternators.		
3	Illustrate the V curve and inverted V curve of a synchronous motor.	M3.02	U
4	Illustrate the different power stages of a synchronous motor.	M3.02	R
5	Explain Pull-in torque and Pull-out torque of a synchronous motor.	M3.03	R

6	Compare synchronous motor and induction motor based on any six	M3.03	A
	parameters.		
7	Draw and explain capacitor start induction run motor.	M4.01	U
8	List any 6 applications of universal motors.	M4.02	R
9	List any three advantages and disadvantages of a PMDC motor.	M4.03	R
10	Explain the three basic categories of stepper motors.	M4.03	U

 $\begin{array}{c} \textbf{PART} \ \textbf{C} \\ \textbf{Answer all questions.} \ \textbf{Each question carries seven marks.} \end{array}$

 $(6 \times 7 = 42 \text{ Marks})$

		Module	Cognitive
III	A 3-phase, 16-pole alternator has a star-connected winding with 144	outcome M1.02	level A
	slots and 10 conductors per slot. The flux per pole is 0.03 Wb,		
	sinusoidally distributed and the speed is 375 r.p.m. Find the		
	frequency rpm and the phase and line e.m.f. Assume full-pitched		
	coil.		
	OR		
IV	A 3-phase, star-connected alternator supplies a load of 10 MW at	M1.04	A
	p.f. 0.85 lagging and at 11 kV (terminal voltage). Its resistance is		
	0.1 ohm per phase and synchronous reactance 0.66 ohm per phase.		
	Calculate the line value of e.m.f. generated.		
V	Explain the constructional features of an alternator.	M1.01	U
	OR		
VI	With neat phasor diagrams explain the effect of power factor	M1.03	U
	variation in armature reaction.		
VII	A 3-phase, star-connected alternator is rated at 1600 kVA, 13,500 V.	M2.01	A
	The armature resistance and synchronous reactance are 1.5 Ω and		
	$30~\Omega$ respectively per phase. Calculate the percentage regulation for		
	a load of 1280 kW at 0.8 leading power factor.		
	OR		
VIII	Derive the expression for power developed in an alternator.	M2.02	A
IX	Enumerate the steps of ZPF method of voltage regulation.	M2.01	U

	OR		
X	Illustrate and explain the dark lamp and bright lamp method of	M2.04	U
	synchronization of alternators.		
XI	Justify the statement with proper diagrams: "Synchronous motors	M3.01	U
	are not self-starting".		
	OR		
XII	Describe hunting phenomenon in a synchronous motor and the steps	M3.03	U
	to eliminate it.		
XIII	Explain the construction and working of shaded pole motor.	M4.01	U
	OR		
XIV	With suitable figures explain the working of stepper motors.	M4.03	U
