Scoring Indicators

FUNDAMENTALS OF ELECTRIC CIRCUITS

INDUCTION MACHINES

Q No	Scoring Indicators	Split score	Sub Total	Fotal Score
	PART A			9
I.1.	$\frac{E_2}{E_1} = \frac{N_2}{N_1} = \text{K is called voltage transformation ratio}$	1		
I. 2.	Magnetizing component	1		
I. 3.	To reduce eddy current loss	1		
I. 4.	air cooling, oil cooling	1		
I. 5.	Short circuit test	1		
I. 6.	$f_r=s^*f$	1		
I. 7.	Transformer	1		
I. 8.	Stator side control (by changing applied voltage, changing applied frequency, changing number of stator poles) Rotor side control (rotor rheostat control, injecting emf in the rotor)	1		
I. 9.	Lifts, Cranes, Hoists, Large capacity exhaust fans, Driving lathe machines, Crushers, Oil extracting mills, Textile and etc.	1		
	PART B			24
II. 1.	Steps - 2 marks Final eqn – 1 mark	2+1	3	
	Consider that an alternating voltage V ₁ of frequency f is			
	applied to the primary. The sinusoidal flux φ produced by			
	the primary can be represented as: $\phi = \phi_m \sin \omega t$.			
	The instantaneous e.m.f. E1 induced in the primary is			
	$e_1 = -N_1 \frac{d\phi}{dt}$			

	$d(\emptyset_m \sin \omega t)$			
	$e_1 = -N_1 \frac{d(\emptyset_m \sin \omega t)}{dt} = -N_1 \phi_m \omega \cos \omega t = -N_1 \phi_m 2\pi f \cos \omega t$			
	$= N_1 \phi_m \ 2\pi f \sin(\omega t - 90)$			
	It is clear from the above equation that maximum value of			
	induced e.m.f. in the primary is			
	$E_{\rm m1} = 2\pi f N_1 \phi_{\rm m}$			
	The rms value is $E_{rmsI} = 2\pi f N_1 \phi_m / 2 = 4.44 f N_1 \phi_m$	6.		
	Similarly $E_{rms2} = 4.44 f N_2 \phi_m$			
II. 2.	Figure – 1 marks Explanation – 2 marks	1+2	3	
	Consider a practical transformer on no load i.e., secondary			
	on open-circuit as shown in Figure. The primary will draw			
	a small current Io to supply (i) the iron losses and (ii) a			
	very small amount of copper loss in the primary. Hence			
	the primary no load current Io is not 90° behind the applied			
	voltage V_1 but lags it by an angle $\phi_0 < 90^\circ$ as shown in the			
	phasor diagram			
	V_1 E_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_8 V_8 V_8 V_9			
	As seen from the phasor diagram, the no-load primary			
	current Io can be resolved into two rectangular			
	components viz. (i) The component Iw in phase with the			
	applied voltage V ₁ . This is known as active or working or			
	iron loss component and supplies the iron loss and a very			
	small primary copper loss.			
	(b) The component I _m lagging behind V ₁ by 90° and is			
	known as magnetizing component. It is this component			
	which produces the mutual flux f in the core.			
II. 3.	Any 3 differences – 3 marks	3*1=3	3	
	Core Type Shell type			

	or i.e.,	$P_{i} = I_{2}^{2}R_{02}$ Iron losses = C	Conner logger		.44
		12		commentario	
	or	$0 - \frac{P_i}{r^2} + R_{02} =$			
	or	$\overline{\mathrm{dI}_2}^{(v_2\cos\phi_2)}$	$+P_{i}/I_{2}+I_{2}R_{02}=0$		
	A.F.	groy a bria axel		graco alal nen' [
			tor) = 0 awond at zid ii . Wi	gardy kampa	
			$\frac{I_2 \cos \phi_2}{+ P_1/I_2 + I_2 R_{02}} $ (i)	De attenue attenue a	
			$\phi_2 + P_i + I_2^2 R_{02}$ $G_2 \cos \phi_2$	materia de por eser la	
	-	Total losses = $P_i + P_C$	$I_2 \cos \phi_2$		
		Total Cu loss, $P_C = I_2^2 R_{02}$			
	If R ₀₂ i	s the total resistance of the transfe	ormer referred to secondary, then,		
		Output power = $V_2I_2 \cos \phi_2$			
II.4			Steps – 2 marks Condition – 1 mark	2+1 3	
		H. V. Winding	H. V. Winding Shell-type transformer		
	7	, V. Winding	L. V. Winding	us and the	
		circuit	circuit		
	6	Series magnetic	Parallel magnetic		
		voltage small kVA transformers	voltage, large kVA rating transformers		
	5	Economical for high	Economical for low	a 1 4 4 4 1 1 1 1	
	4	Leakage flux is more	Leakage flux is less	Ashron Superior Child	
		and less insulating material	and more insulation		
	3	Requires more copper	Requires less copper		
	2	Has 2 limbs	windings Has 3 limbs		
		Winding encircles the core	Core encircles the major part of the		

		Any 3	conditions - 3*1 marks	3*1=3	3
	1.	The voltage and freque transformers should be for bars voltage and frequence	or the incoming bus-		
	2.	The terminals of the transproperly be marked and regard to polarity otherwishort-circuited or lead circulating current.	nd connected with ise the windings get		
		The transformation or transformers should be the the circulating current visecondaries of the transformers the voltage. This circulated reduce the capacity of the	ne same. Otherwise, vill produce in the formers to equalize lating current will		
		The percentage (per-unit transformers operating p the same in order to sha transformers according to	arallelly should be are the load on the		
		The transformer's wind reactance ratio should san factors of the transformers will be different with resp	ne or else the power s supplying the load		
II.6.			nous speed – 1.5 marks eed of rotor – 1.5 marks	1.5+ 1.5	3
		$2.0 \text{f/P} = \frac{120 \times 50}{4} = 1500 \text{ r.p.}$ acy of rotor = sf = 0.04 * 1			
17			Any 3 points	1+1+1	Section 1
II.7.	Sl No	Wound rotor Rotor consists of a	Squirrel cage rotor Rotor consists of bars	ge dite iye dite san san	
			1,000,001,001		
		three phase winding similar to stator winding	which are shorted at ends with end rings	ni. mes Offer 21 or the dis	ic to i Dans III Discott
	2	similar to stator		of the grant of th	Fig. 3. Care 1 Care 2 C

	4	Speed control by rotor resistance is possible	Speed by rotor resistance is not possible			
	5	Construction is delicate and frequent maintenance required	Construction is robust and maintenance free	is and l		
	6	Used in lifts hoists cranes elevators etc	Used in lathes, drilling machines, fans blowers , grinders etc			
II.8.			ling definition – 1 mark Explanation – 2 marks	1+2	3	
	motor h to its sy crawling synchro motor This act a stator complex harmoni revolves	peen observed that squire as a tendency to run at vernchronous speed, this phase. The resultant speed mous speed slip ring and a sion is due to the fact that, winding is not purely sire wave consisting a fundices like 3rd, 5th, 7th etc. a synchronously at synchronously at synchronously.	ery low speed compared tenomenon is known as is nearly 1/7 th of its a squirrel cage induction flux wave produced by the wave. Instead, it is a tamental wave and odd The fundamental wave proous speed Ns whereas			
	direction harmoni fundame balanced produce now con	7th harmonics may rotate a at Ns/3, Ns/5, Ns/7 species to torques are also deve- ental torque. 3rd harmond d 3-phase system. Hence rotating field and torque. nsist three components a	eds respectively. Hence, loped in addition with onics are absent in a 3rdd harmonics do not The total motor torque as: (i) the fundamental			71.
	torque w torque w harmoni The sm breaking The 7th	with synchronous speed with synchronous speed Novith synchronous speed	Ns/5, (iv) 7th harmonic s/7 (provided that higher monic torque produces sted.	orek orek otnek Listia otrok		
	set up ro speed e harmoni	stating field in forward direction of the sequence of the sequ	ection with synchronous neglect all the higher will be equal to sum of	182A 64L 1		
	harmoni before1/	c torque reaches its maximum 7th of Ns. If the mechanisms constant load torque, the	mum positive value just nical load on the shaft			

	motor may fall below this load torque. In this case, motor will not accelerate up to its normal speed, but it will run at a speed which is nearly 1/7th of of its normal speed. This phenomenon is called as crawling in induction motors			
II.9.	Torque under running conditions- 1.5 marks Torque under standstill conditions- 1.5 marks	1.5 +1.5	3	-
	Torque under running conditions = $\frac{3}{2\pi N_s}$. $\frac{sE_2^2 R_2}{R_2^2 + (sX_2)^2}$ Torque under standstill conditions = $\frac{3}{2\pi N_s}$. $\frac{E_2^2 R_2}{R_2^2 + (X_2)^2}$			
10	Any 3 starter- 3 marks	1.5 + 1.5	3	
	Direct Online starter, star delta starter, autotransformer starter, stator resistance starting			
	PART C			42
III	Calculation of K-1 mark Resistance, reactance and impedance referred to primary-3 marks Resistance, reactance and impedance referred to secondary-3 marks	1+3+3	7	
	K =220/4400 =1/20 I1 = 50000/4400 = 11.36 A(assuming 100 % efficiency) I2 =50000/2220 =227 A R1= 3.45 Ω, X1 = 5.2 Ω, R2 =0.009 Ω and X2 =0.015 Ω (i) Referred to HV side $R_{01} = R_1 + R_2$ ' = $R_1 + R_2/K^2$ = 3.45 + (0.009 * 20* 20) = 7.05 Ω $X_{01} = X_1 + X_2$ ' = $X_1 + X_2/K^2$ = 5.2 + (0.015 * 20* 20) = 11.2 Ω Z01 = $\sqrt{R_{01}^2 + X_{01}^2} = 15$ Ω (ii) Referred to secondary			

. .

	$= 0.009 + 3.45* (1/20)^{2}$ $= 0.0176 \Omega$ $X_{02} = X_{2} + X_{1}'$ $= X_{2} + X_{1} * K^{2}$ $= 0.015 + 5.2* (1/20)^{2}$ $= 0.028 \Omega$ $Z_{01} = 13.23 \Omega$ $Z_{02} = 0.03311 \Omega$		Tuestine of	
IV	Maximum flux – 3 marks Core loss – 2 marks Magnetizing component- 2 marks	3+2+2	7	
	$\begin{split} E_1 &= 4.44 \text{ f N}_1 \phi_m \\ 235 &= 4.44 \text{ x } 50 \text{ x } 200 \text{ x } \phi_m \\ \phi_m &= \underline{\textbf{5.29 mWb}} \\ \text{Coreloss} &= V_1 I_0 \cos \phi = 235 \text{ x } 5 \text{ x } 0.25 = \underline{\textbf{294 W}} \\ I_\mu &= I_0 \sin \phi = 5 \text{ x } 0.9682 = \underline{\textbf{4.84 A}} \end{split}$			
V	Derivation – 7 marks	7	7	
	The weight of the copper is proportional to the length and area of a cross-section of the conductor. Weight of Cu required in a winding α current x turns. The length of the conductor is proportional to the number of turns, and the cross-section is proportional to the product of current and number of turns. Weight of autotransformer is proportional to: $W_a \propto I_1 (N_1 - N_2) + (I_2 - I_1) N_2$ $W_a \propto I_1 N_1 + I_2 N_2 - 2I_1 N_2$ Weight of ordinary transformer is proportional to: $W_o \propto I_1 N_1 + I_2 N_2$			
	the ratio of the weight of the copper in an auto	E LOTES E pa = 1		

,

	transformer is given as		
	$\frac{W_a}{W_o} = \frac{I_1 N_1 + I_2 N_2 - 2I_1 N_2}{I_1 N_1 + I_2 N_2}$		
	$W_0 \qquad I_1 N_1 + I_2 N_2$		
	OR		
	$\frac{W_a}{W_o} = \frac{I_1 N_1 + I_2 N_2}{I_1 N_1 + I_2 N_2} - \frac{2I_1 N_2}{I_1 N_1 + I_2 N_2}$		
	$\frac{W_{a}}{W_{o}} = 1 - \frac{2 I_{1} N_{2} / I_{1} N_{1}}{I_{1} N_{1} / I_{1} N_{1} + I_{2} N_{2} / I_{1} N_{1}} = 1 - K$	- i - i	
	OR		
1	$W_{a} = (1 - K)W_{o}$		H
VI	SC test – 2.5 marks	2.5+	7
	OC test – 2.5 marks Circuit- 2 marks	Man #155 11 11	
	Open-Circuit or No-Load Test:		
	This test is conducted to determine the iron losses (or core		
	losses) and parameters R0 and X0 of the transformer. In		
	this test, the rated voltage is applied to the primary		
	(usually low-voltage winding) while the secondary is left		
	open circuited. The applied primary voltage V1 is		
	measured by the voltmeter, the no load current I0 by		
	ammeter and no-load input power W0 by wattmeter as	es ilgan	
	shown in Fig. As the normal rated voltage is applied to the		
	primary, therefore, normal iron losses will occur in the	n isia	orken til
	transformer core. Hence wattmeter will record the iron	i posta	i . on [
	losses and small copper loss in the primary. Since no-load	H. zeol	506000 T
	The state of the s	di mili	Harre 1
	current I0 is very small. Cu losses in the primary under	liny nat	berium.
	no-load condition are negligible as compared with iron		
	losses. Hence, wattmeter reading practically gives the iron		
	losses in the transformer.		

Iron losses, $Pi = Wattmeter reading = W_0$

No load current = Ammeter reading = I_0

Applied voltage = Voltmeter reading = V_1

Input power, $W_0 = V_1 I_0 \cos \phi_0$

No-load p.f.,
$$\cos \phi_0 = \frac{W_0}{V_1} I_0$$

$$I_W = I_0 \cos \phi_0; \qquad I_m = I_0 \sin \phi_0$$

$$R_0 = \frac{V_1}{I_W} \quad \text{and} \quad X_0 = \frac{V_1}{I_m}$$

Short-Circuit or Impedance Test;

This test is conducted to determine R01 (or R02), X01 (or X02) and full-load copper losses of the transformer. In this test, the secondary (usually low-voltage winding) is short-circuited by a thick conductor and variable low voltage is applied to the primary as shown in Fig. The low input voltage is gradually raised till at voltage VSC, fullload current I1 flows in the primary. Then I2 in the secondary also has full-load value since I1/I2 = N2/N1. Under such conditions, the copper loss in the windings is the same as that on full load. There is no output from the transformer under short-circuit conditions. Therefore, input power is all loss and this loss is almost entirely copper loss. It is because iron loss in the core is negligibly small since the voltage VSC is very small. Hence, the wattmeter will practically register the full-load copper losses in the transformer windings

	Ws. II. V. II. Ro1 = R1 + R'2 Xo1 = X1 + X'2 Vsc Vsc II.	
	Full load Cu loss, P_C = Wattmeter reading = W_S Applied voltage = Voltmeter reading = V_{SC} F.L. primary current = Ammeter reading = I_1 $P_C = I_1^2 R_1 + I_1^2 R'_2 = I_1^2 R_{01}$ $R_{01} = \frac{P_C}{I_1^2} \& Z_{01} = \frac{V_{SC}}{I_1}$	
	$X_{01} = \sqrt{Z_{01}^2 - R_{01}^2}$ Short-circuit p.f, $\cos \phi_2 = \frac{P_C}{V_{SC}I_1}$	
VII	Calculation of various parameters – 5 marks 5+2 7 Equivalent circuit – 2 marks	
	$V_1 l_0 \cos \phi_0 = W_0$	
	$200 \times 0.7 \times \cos\phi_0 = 70$	
	$\cos \phi_0 = 0.5 \text{ and } \sin \phi_0 = 0.866$	
	$I_w = I_0 \cos \phi_0 = 0.7 \times 0.5 = 0.35 \text{ A}$	
	$I_{\mu} = I_0 \sin \phi_0 = 0.7 \times 0.866 = 0.606 \text{ A}$	
	$R_0 = V_1/I_w = 200/0.35 = 571.4 \Omega$	
	$X_0 = V1/I\mu = 200/0.606 = 330 \Omega$	
	$Z_{02} = V_{sc}/I2 = 15/10 = 1.5 \Omega$	
	K = 400/200 = 2	
	$Z_{01} = Z_{02}/K^2 = 1.5/4 = 0.375 \Omega$	
	$I_2^2 R_{02} = W$	
	Thus $R_{02} = 85/100 = 0.85 \Omega$	
	$R_{01} = R_{02}/K^2 = 0.85/4 = 0.21 \Omega$	
	$X_{01} = \sqrt{Z_{01}^2 - R_{01}^2} = 0.31 \Omega$	
	Output kVA = 5/0.8	
	Output current $I_2 = 5000/(0.8 \times 400) = 15.6 \text{ A}$	
	$Z_{02} = 1.5 \Omega R_{02} = 0.85 \Omega,$	

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
VIII	kVA load for maximum efficiency- 2 marks Maximum efficiency – 2 marks Efficiency at half full load and 0.8 pf – 3 marks	2+2+3	7
	(i) kVA load for maximum efficiency =FL kVA x Iron loss		
	$\sqrt{FL Cu loss}$ $= 250 \text{x} \sqrt{\frac{1.6}{1.4}} = \underline{160 \text{kVA}}$		
	For max efficiency Core loss = Copper loss Hence total		
	loss =1.4 + 1.4 = 2.8 kW		
	Max efficiency = $160/162.8 = 98.2 \%$		
	(ii) Cu loss at half full load= $1.6 \times (1/2)^2 = 0.4 \text{ kW}$		
	Total losses = $1.4 + 0.4 = 1.8 \text{ kW}$		
	Half full load output at $0.8 \text{ p.f} = (150/2) \times 0.8 = 60 \text{ kW}$		
	Efficiency = $60/(60 + 1.8) = 97\%$		
IX	Rotor input – 2 marks Rotor copper loss – 3 marks Mechanical power – 2 marks	2+3+2	7
	Rotor input, P2 = Tg ω s = Tg x 2π Ns	7	
	Rotor gross output, Pm = Tg ω = Tg x 2π N	ex ma	2.00
	The difference of two equal rotor Cu loss	Sylvania	1-1-1
	Rotor copper loss = $P2 - Pm$		
	$Pcu = Tg \times 2\pi (Ns - N)$	1020	
	By 1 and 3 we get	- y=v 2	MARIE I
	Rotor Cu loss/ Rotor input = (Ns - N)/Ns = s	description.	Entern (1)
	Thus Rotor Cu loss = s * Rotor input		

* * * **

	Pm = Input P2 – Rotor cu loss	- ur Si		
	=input - s * rotor input			
	= (1 - s) rotor input			
	Thus $\frac{P_m}{Rotor\ input} = (1 - s)$		x ()	
X	Torque equation – 1 mark Condition for max torque - 4 marks Maximum torque – 2 marks	1+4+2	7	
	For maximum torque dT/ds = 0 $T = \frac{3}{2\pi N_s} \cdot \frac{sE_2^2 R_2}{R_2^2 + (sX_2)^2}$ $T = \mathbf{k} \cdot \frac{sE_2^2 R_2}{R_2^2 + (sX_2)^2}$ $dT/ds =$			
	$\frac{(k s E_2^2 R_2) \frac{d}{ds} (R_2^2 + s^2 X_2^2) - (R_2^2 + s^2 X_2^2) \frac{d}{ds} (k s E_2^2 R_2)}{(R_2^2 + s^2 X_2^2)^2} = 0$			
	$\therefore k s E_2^2 R_2 [2s X_2^2] - (R_2^2 + s^2 X_2^2) (k E_2^2 R_2) = 0$			
	$\therefore 2 s^2 k X_2^2 E_2^2 R_2 - R_2^2 k E_2^2 R_2 - k s^2 X_2^2 E_2^2 R_2 = 0$			
	$k s^2 X_2^2 E_2^2 R_2 - R_2^2 k E_2^2 R_2 = 0$			
,	$S^{2}X_{2}^{2} - R_{2}^{2} = 0$ $S^{2} = \frac{R2^{2}}{X2^{2}} \text{ or } S = \frac{R2}{X2}$ By substituting R2 = s X2 in Torque equation we get, $T = T = \frac{3}{2\pi N_{s}} \cdot \frac{sE_{2}^{2} sX_{2}}{(sX_{2})^{2} + (sX_{2})^{2}} = \frac{3}{2\pi N_{s}} \cdot \frac{E_{2}^{2}}{2X_{2}} \text{ Nm}$			
XI	Circuit – 3 marks			
AI	Working – 4 marks	ig 7	1.4 1.21	
	Star-delta starting The stator winding of the motor is designed for delta operation and is connected in star during the starting period. When the machine is up to speed, the connections are changed to delta. The six leads of the stator windings are connected to the changeover switch as shown. At the instant of starting, the changeover switch is thrown to "Start" position which connects the stator windings in	000 To		
	star. Therefore, each stator phase gets $V/\sqrt{3}$ volts where V is the line voltage. This reduces the starting current. When the motor picks up speed, the changeover switch is thrown			

	to "Run" position which connects the stator windings in delta. Now each stator phase gets full line voltage V. The disadvantages of this method are: (a) With star-connection during starting, stator phase voltage is $1/\sqrt{3}$ times the line			
	voltage. Consequently, starting torque is 1/3 times the value it would have with Delta-connection. This is rather a large reduction in starting torque. (b) The reduction in voltage is fixed.	100	are 4	
	$\frac{T_{st}}{T_f} = \left(\frac{I_{st}}{I_f}\right)^2 \times s_f = \left(\frac{I_{sc}}{\sqrt{3} \times I_f}\right)^2 \times s_f$	DILL IVE		
	$\frac{T_{st}}{T_f} = \frac{1}{3} \left(\frac{I_{sc}}{I_f}\right)^2 \times s_f$			
	R MCB			
	B1 B2 A2 C2 C1 B2 C1			
	Start TPDT Run Y Ref: https://electricalbaba.com/star-delta-starter/		•	- 17
XII	Construction – 3 marks Working – 2 marks Equivalent circuit- 2 marks	3+2+ 2 11- 10/2 1044	7 b-yas? te art dango	
	A rotor of double cage motor carries two squirrel cage windings embedded in two rows of slots.	When W	boined	
	The outer slots contain high resistance and low reactance conductors and inner cage have low resistance and high	libuliant maa lo olaacc		

	e le tricale as som			
	Reference:www.electricaleasy.com			
	At starting rotor has the same frequency as that of stator. Hence reactance of inner cage winding becomes higher than that of the outer cage.			
	Thus rotor current is forced to flow through the outer cage to produce sufficiently high starting torque.			
	At normal speed since frequency of rotor reduces to a low value the reactance of inner cage and hence impedance reduces to a very low value.			
	Then rotor current is forced to flow through the inner cage to produce sufficiently high running torque.			
	Fig: Equivalent circuit of double cage induction motor	oned oned oned of		
XIII	Any two methods – 3.5 + 3.5	3.5+ 3.5	7	
	(1) Regenerative braking: If the rotor speed becomes greater than synchronous speed, then the relative speed between the rotor conductor and air gap rotating field reverse and the power will be fed back to supply.			

	(2) Plugging: When the phase sequence of supply of the motor running at speed is reversed by interchanging the connection of any two phases of the stator on the supply terminal. The reversal of phase sequence reverses the direction of a rotating field. (3) Dynamic braking: In this method, the stator of induction is connected across the DC supply. The direct current flow through the stator produces a stationary magnetic field, and the motion of the rotor in this field induces voltage in the stationary windings. The machine therefore works as a generator and the generated energy is dissipated in the rotor circuit resistance, thus giving the dynamic braking.			
XIV	Steps- 4 marks Figure showing all relevant points – 3 marks	4+3	7	
	By using the data obtained from the no load test and the blocked rotor test, the circle diagram can be drawn using the following steps: Step 1: Take reference phasor V as vertical (Y-axis). Step 2: Select suitable current scale such that diameter of circle is about 20 to 30 cm. Step3: From no load test, Io and Φo are obtained. Draw vector Io, lagging V by angle Φo. This is the line OO' as shown in the Fig. Step 4: Draw horizontal line through extremity of Io i.e. O', parallel to horizontal axis. Step 5: Draw the current ISN calculated from Isc with the same scale, lagging V by angle Φsc, from the origin O. This is phasor OA as shown in the Fig. Step 6: Join O'A. the line O'A is called output line Step 7: Draw a perpendicular bisector of O'A. Extend it to meet line O'B at point C. This is the centre of the circle. Step 8: Draw the circle, with C as a center and radius equal to O'C. This meets the horizontal line drawn from O' at B as shown in the Fig.			
	Step 9: Draw the perpendicular from point A on the horizontal axis, to meet O'B line at F and meet horizontal axis at D. Step 10: Torque line. The torque line separates stator and rotor copper losses. Thus, the vertical distance AD		MARKET IN	

1

r (1) represents power input at short circuit i.e. W_{SN}, which consists of core loss and stator, rotor copper losses.

Now FD = O'G = Fixed loss Where O'G is drawn perpendicular from O' on horizontal axis. This represents power input on no load i.e. fixed loss.

Hence AF α Sum of stator and rotor copper losses ..

Then point E can be located as

AE/EF = Rotor copper loss/ Stator copper loss

The line O'E under this condition is called torque line

