Scoring Indicators

Question Paper Set

APPLIED PHYSICS I

COURSE NAME: APPLIED PHYSICS II

COURSE CODE: 2003

QID: 2106220110

Q	Scoring	Split	Sub	Total
No	Indicators	score	Total	score
	PART A			9
I. 1	Any one example like rotation of earth	1	1	
I. 2	Ultrasonic waves	1	1	
I. 3	Any one example like: Reflection takes place from mirrors	1	1	
I. 4	Any one example like: Spherical abberation	1	1	
I. 5	Coulomb	1	1	
I. 6	Statement or I proportional to V	1	1	9 x
I. 7	Resistivity is a constant of a metal.	1	1	
I. 8	Electrons	1	1	
I. 9	Any one method like: Electrical pumping	1	1	
	PART B			24
II. 1	Transverse wave: The vibration of the particles of the medium is at right angles to the direction of propagation of the wave. A transverse wave consists of a series of crusts and troughs.	1.5	3	
	Longitudinal wave: The vibration of the particles of the medium is along or parallel to the direction of propagation of the wave. A longitudinal wave consists of a series of compressions and rarefactions. OR any appropriate explanation	1.5		

		,		
II. 2	Concept of superposition of waves	1.5	3	
	Explanation like: crest +crest-Maximum displacement			
	crest+ trough - minimum displacement	1.5		
II. 3	Ray diagram	1	3	
	Explanation	2		
II. 4	a) Convex mirrors are used in vehicles to see the rear side	1	3	
	b) The angle between the incident ray and normal is called	1		
	angle of incidence			
	c) The geometric centre of lens is called optic centre .	1		
II. 5	Two conditions	1.5 each	3	
11 6	Diagram	1	3	
11. 0	Total voltage $V = V_1 + V_2 + \dots$		3	
	R = $R_1 + R_2 + \dots$	1 1		
11.7			3	
II. 7	Brown-1, Yellow-4, Red -2 (multiplier), Silver - 10 (tolerance)	1	3	
TT 0	Value: 1400 ohm ± 10	2		
II. 8	Silver - conductor	1/2	3	
	Addition of impurities - doping	1/2		
	Reasonably small band gap - semiconductor	1/2		
	Voltage regulator - diode	1/2		
	Amplifier - transistor	1/2		
	Photovoltaic effect – solar cell	1/2		
II.9	Any three applications	1 each	3	
II.10	Appropriate note with three sentences	3	3	
III	PART C			42
1	$v = f \lambda$	2	7	7
	$\lambda = v / f$	2		
	= 330/484	1		
	= 0.68 m	2		

Page 2 of 5

2	The displacement of a particle executing simple harmonic		7	7
	motion is given by			
	$y = a \sin \omega t$	1		
	The velocity of the particle executing SHM is			
		2		
	$\frac{dy}{dt} = a\omega \cos \omega t$			
	The acceleration of the particle executing SHM is			
	$\frac{d^2y}{dt^2} = -a\omega^2 \sin\omega t$			
		2		
	$\frac{d^2y}{dt^2} = -\omega^2y$			
	$\frac{d^2y}{dt^2} + \omega^2 y = 0$	2		
	This is the differential equation for SHM.			
			perg	
3	About acoustics of building	2	7	7
	Factors like: Reverbration, reverberation time etc.	3		
	Factors like: echo, noise	2		
4	Ray diagram	2.5 each	7	7
	Nature of image	1 each		
	47			
5	$m = \frac{v}{u} = -2$		7	7
	$\therefore v = -2u$			
	We have,	1		
	-u + v = 117			
	-u - 2u = 117			
	-3u =117			
	u= - 39 cm	2		
	v = -2u = 78 cm	1		
	From the lens formula,			
	$\frac{1}{1} = \frac{1}{1} - \frac{1}{1}$			
	f v u			

Page 3 of 5

f= 26 cm			
The power of the convex lens is	2		
Power = $1/f = 1/0.26 = 3.8 D$			
	1		
6 $f = -20 \text{ cm}$ and $u = -30 \text{ cm}$	n	7	7
From lens formula,			
$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$			
$\frac{1}{v} = \frac{1}{f} + \frac{1}{u}$	2		
$v = f \times u/f + v$			
= -20x-30/-50 = -12 cm			
m= v/u	3		
=-12/-30=0.4	1		
	1		
7 First law: statement	2	7	7
Illustration	' 1		
Second law	2		
Illustration	2		
8 Diagram	2	7	7
Derivation of balancing condition	5		
9 Diagram	2		
Principle	1		
Working	3		
Equation for current	1		
10 Forward Characteristic	3.5 each	7	7
Reverse Characteristic			
a) Stimulated emission, Pumping, Popular	tion inversion	7	7
b) Three applications	4		
o, mee apprentions	3		

12	Diagram	2	7	7
	Workin	3		
	Description.	2		