DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE

Refrigeration and Air-Conditioning SCHEME OF VALUATION

Time: 3 hours

Maximum Marks: 75

Qn	Scoring Indicator	Split	Sub	Total
No		up	total	Marks
		score		

PART A

I. Answer all questions in one word or one sentence.

(9x1=9 Marks)

F		(9	x1=9 Ma	rks)
1	Dry ice.	1	1	
2	3	1	1	
3	accumulator	1	1	
4	R-12, R-11,R-123,air etc	1	1	-
5	Absorber.	1	1	
6	Cascade refrigeration system	1	1	
7	Space Rocket propulsion Cryogenic engines are powered by cryogenic propellants Mechanical Applications- Magnetic Separation, Heat treatment The life of the tools die castings & their dies, forgings, jigs & fixtures etc increase when subjected to cryogenic heat treatment. Recycling• Cryogenic recycling - turns the scrap into raw material by subjecting it to cryogenic	1	1	9
8	$\frac{\text{Sensible Heat}}{\text{Total Heat}} = \frac{\text{SH}}{\text{SH + LH}} = \frac{h_{A-}h_2}{h_{1-}h_2}$	1	1	

9	psychrometer	1	1	
		1	l	ı

PART B

II. Answer any 8 questions from the following.

(8x3=24 Marks)

	COP is defined as the ratio of the heat extracted from the refrigerated			
	space to the amount of work or energy input required to achieve that			
1	heat transfer. COP of system	3	3	
	COP of Bell-coleman cycle= $\frac{1}{r_p \frac{v-1}{v-1}}$			
	$r_p \overline{\upsilon} - 1$			
2	Compressor, condenser, evaporator and expansion valve	1*3	3	
	R-134 a, Tetrafluoro-ethane(CF ₃ CH ₂ F).	Iden		
		-1		
	Since the refrigerent R-134a has no chloride atom, therefore this			
	refrigerent has zero ozone depleting potential (ODP) has 74% less			
3	global warming potential (GWP) as compared to R-12.		3	
	The R-134a is considered to be the most preferred substitute for	Feat-		
	refrigerent R-12. Its boiling point is -26.15 C which is quite close to	2		
	the boiling point of R-12.			
	R-134 a is, now-a-days, widely used in car air-conditioners.			
	Superheating in a refrigeration cycle refers to the process of increasing			
	the temperature of the refrigerant vapor above its saturation			
	temperature, typically after it has been vaporized in the evaporator but			3
	before it enters the compressor. The effect of superheating on the			
4	coefficient of performance (COP) of a refrigeration cycle can be	1*3	3	
T	explained as follows:		3	
	Improved Compressor Efficiency: Superheating the refrigerant vapor	:		
	before it enters the compressor helps reduce the refrigerant's density			
	and increases its specific volume. This results in a decrease in the			

compressor's volumetric and refrigerant mass flow rates, reducing the work required to compress the refrigerant. As a result, the compressor operates more efficiently, requiring less energy input. This improved compressor efficiency can lead to an increase in the COP of the refrigeration cycle. Reduced Potential for Liquid Slugging: Superheating the refrigerant vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Tips to the properties of the condenser of the condense					
operates more efficiently, requiring less energy input. This improved compressor efficiency can lead to an increase in the COP of the refrigeration cycle. Reduced Potential for Liquid Slugging: Superheating the refrigerant vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. 5 Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. 2 Listing 1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		compressor's volumetric and refrigerant mass flow rates, reducing the	1		
compressor efficiency can lead to an increase in the COP of the refrigeration cycle. Reduced Potential for Liquid Slugging: Superheating the refrigerant vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		work required to compress the refrigerant. As a result, the compressor			
refrigeration cycle. Reduced Potential for Liquid Slugging: Superheating the refrigerant vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		operates more efficiently, requiring less energy input. This improved			
Reduced Potential for Liquid Slugging: Superheating the refrigerant vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		compressor efficiency can lead to an increase in the COP of the			
vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidiffcation. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		refrigeration cycle.			
vapor helps ensure that only vapor enters the compressor, eliminating or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidiffcation. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones					
or minimizing the presence of liquid droplets. Liquid slugging occurs when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		Reduced Potential for Liquid Slugging: Superheating the refrigerant			
when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		vapor helps ensure that only vapor enters the compressor, eliminating			
when liquid refrigerant enters the compressor, leading to potential damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		or minimizing the presence of liquid droplets. Liquid slugging occurs			
damage due to hydraulic forces. By avoiding liquid slugging, the compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		when liquid refrigerant enters the compressor, leading to potential			
compressor operates more smoothly and reliably, contributing to improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig. 2 Listing Ing-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones					
improved efficiency and a higher COP. Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones					
Better Heat Transfer in the Condenser: Superheating the refrigerant vapor can enhance heat transfer in the condenser. 5 Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency 6 Fig- 2 Listi ng-1 7 Temperature, humidification. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		7			
vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		improved efficiency and a higher COT.			
vapor can enhance heat transfer in the condenser. Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		Retter Heat Transfer in the Condenser: Superheating the refrigerent			
Ultra low temperatures can be achieved, high cooling capacity, precise temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones					
Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones Ultra low temperatures can be achieved, high cooling capacity, precise temperature, high control of Gases, Energy efficiency Fig. 2 Listi ng-1 7 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		vapor can emiance neat transfer in the condenser.			
temperature control, Liquefaction of Gases, Energy efficiency Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		Ultra low temperatures can be achieved, high cooling capacity, precise			
Fig- 2 Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones	3	temperature control, Liquefaction of Gases, Energy efficiency	4	3	
6 Only bulb temperature (a) Humidification. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones 2 Listi ng-1 3 1*3 3		•			
6 Only bulb temperature (a) Humidification. Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones 2 Listi ng-1 3 1*3 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 -1.		
Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones Listi ng-1 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		tentin, App tenting to the second of the sec	_		
Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones	6	172 hau 200 ha		3	
7 Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		4: 1 W ₁ 4 ₂ 2 W ₂	Listi		3
Temperature, humidity, air movement, noise levels, indoor air quality, thermal comfort zones		(a) Humidisanian	ng-1		
thermal comfort zones		(b) Dehumidification. Sensible cooling process O-A			
thermal comfort zones	7	Temperature, humidity, air movement, noise levels, indoor air quality,			
	/	thermal comfort zones	1*3	3	
					3

PART CAnswer all the questions from the following. Each carries 7 marks

(6x7=42 Marks) Condenser temperature, $T_H = 27 \,^{\circ}\text{C} = 300 \,^{\circ}\text{K}$ 4 Evaporator temperature, $T_L = -10 \, ^{\circ}\text{C} = 263 \, \text{K}$ Ш C.O.P. of the refrigerating machine $=\frac{T_L}{T_{H-T_L}} = \frac{263}{37} = 7.10$ i) 7 C.O.P. of the Heat pump= $\frac{T_H}{T_{H-T_L}} = \frac{300}{37} = 8.10$ 3 OR mass of air is circulated per hour, $\dot{m} = 500 \text{ Kg/Hr}$. suction pressures P1= 1 bar IV compression pressures P2= 5 bar. 7 2 temperature before compression, $T_1 = 8$ °C = 281 K T_3 =28 °C. = 301 K

	$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$			
	expansion ratio, $r_p = 5$			
	Cp of air =1.003 kJ/kg.K; adiabatic index, $\gamma = 1.4$.			
	$T_2 = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}} T_1 = \left(\frac{5}{1}\right)^{\frac{1.4-1}{\gamma}} 281 = 444.54$			
		2		
	i) Heat extracted from the cold chamber per hour= $C_p \dot{m} \Delta T = 500 \times$			
	$1.003 \times 20 = 1985.31 \text{ kJ/Hr}$			
	ii) COP of system= $\frac{1}{r_p^{\frac{v-1}{v}}-1}$ = 1.71	3		
	·			
	Condenser High Pressure Side Expansion Device Compressor	Fig-3		
	Low Pressure Side Evaporator Activa			
	1. Compressor			
$ \mathbf{v} $	It is the heart of the system, it is motor driven.		7	
	It sucks vapor refrigerant from evaporator, compresses it and delivers to the	1		
	condenser			
	2. Condenser			
	High pressure vapor refrigerant from the compressor is condensed into			
	liquid form at constant pressure.			
	The condensation is done using a cooling medium such as water. Here the	1		
	vapour refrigerant transform into liquid state by rejecting latent heat of			
	evaporation.			
	3. Expansion Valve			

	Here, high pressure liquid refrigerant from condenser is throttled down(isenthalpically) to evaporator pressure. Rate of flow of refrigerant is metered here In this stage, refrigerant has a tendency to change its state from liquid to vapour, but there will be no heat energy to change. 4. Evaporator. It is the cooling chamber in which products to be cooled is placed. Low pressure liquid refrigerant flows through the coils of evaporator and	1		
	absorbs heat from the products at evaporator pressure. So refrigerant vapourises and passes to the compressor.			
	OR	1		
	Advantages- higher efficiency, wide range of applications,	4		
VI	Greater cooling capacity, better temperature control, ability to provide heating Disadvantages- Higher initial cost, environmental effect, maintenance and service req., noise and vibration, size and space req.	3	7	
	Si.No. Water cooled condenser Air cooled condenser			ļ
	Initial cost and maintenance costs are high Additional pipes are required to take water to and from the condenser. If there is no water re-circulation system disposing of used water is difficult. It is simple in construction. It is cheap. Maintenance cost is also very low. No piping work is involved. No problem in disposing of air.			
VII	4. Corrosion occurs inside the water carrying surface and there are more fouling effects. 5. Heat transfer rate is high. 6. Used for large capacity plants. 7. It is silent in operation as there is no fan. 8. Flexibility is low 9. Even distribution of water on the condensing	1*7=7	7	
	surface area. OR			

Page **8** of **12**

	flash chamber with baffles to eliminate the liquid			
	refrigerant.			
	Working			
	• The liquid refrigerant flows from the surge chamber by gravity to the			
	evaporator coils in which it vaporises by absorbing its latent heat from the			
	surroundings and liquid- vapour mixture returns to the chamber. Here, the			
	liquid and vapour are separated.			
	• The vapour is collected in flash chamber and from there it is drawn off			
	into suction line leading to compressor.	Exp-4		
	Advantages			
	• The surface of evaporator coil is in contact with the liquid refrigerant			
	under all load conditions.			
	• They provide high rate of heat transfer.			
	Disadvantages			
	• They are bulky in size.			
	Outside air Perforated Air membrane washer (Fresh atmospheric air) Air damper Filter Cooting coil Water circulating pump Make up water	fig-3		
XI			7	
	The outside air flows through the damper, and mixes up with recirculated			
	air (which is had from the conditioned space). The mixed air passes			
	through a filter for removing dirt, dust and other impurities. The air now			
	passes through a cooling coil, which has a temperature much below the	Exp-4		
	required dry bulb temperature of air in the conditioned space.	Evh-4		
	The cooled air passes through a perforated membrane and loses its moisture			

<u></u>				
	in the condensed form which is collected in a sump. After that, air is made			
	to pass through a heating coil to heat up the air slightly. This is			
	accomplished for bringing the air to the designed dry bulb temperature and			
	relative humidity.			
	Now the conditioned air is supplied to the conditioned space by a fan. From			
	the conditioned space, a part of the used air is exhausted to atmosphere by			
	the exhaust fans or ventilators. The remaining part of the used air, known			
	as recirculated air, is again conditioned as illustrated in Fig. 9.10. The			
	outside air is sucked and made to mix with the recirculated air in order to			
	make up for the loss of conditioned (or used) air through exhaust fans or			
	ventilators from the conditioned space.			
	OR			
	In air conditioning load calculation, various sources contribute to heat gain			
	in a space. These sources include:	listing-		
		1		
	Occupancy Heat: The heat generated by people occupying the space. The			
	number of occupants and their activity levels affect the heat gain. For			
	example, a crowded room with active individuals will generate more heat			
	than a sparsely populated space.			
	Lighting: The heat generated by lighting fixtures, such as incandescent or			
XII			_	
7111	halogen bulbs. While modern LED lights produce less heat, traditional		7	
	lighting sources can contribute significantly to heat gain, particularly in			
	large spaces with many fixtures.			
	Equipment Heat: Heat generated by electronic devices, appliances,			
	machinery, and other equipment present in the space. This can include			
	computers, printers, refrigeration units, cooking appliances, and more. The			
	heat produced by these devices needs to be accounted for in load	E		
	calculations.	Exp-		
	Caroniations.	1.5*4		

XIII	$h_A = 40 \text{ kJ/kg}$ $W_1 = 0.003 \text{ kg/kg}$ of dry air. $W_2 = 0.0171 \text{ kg/kg}$ of dry air. Heat added to air = $h_2 - h_1 = 62.3 - 22.7 = 39.6 \text{ kJ/kg}$ Moisture added to air = $W_2 - W_1 = 0.0171 - 0.003 = 0.0088 \text{ kg/kg}$ of dry air	5	7
XIII	$W_1 = 0.003 \text{ kg/kg}$ of dry air. $W_2 = 0.0171 \text{ kg/kg}$ of dry air. Heat added to air = $h_2 - h_1 = 62.3 - 22.7 = 39.6 \text{ kJ/kg}$		7
XIII	W_1 = 0.003 kg/kg of dry air. W_2 = 0.0171 kg/kg of dry air.	5	7
XIII	$W_1 = 0.003 \text{ kg/kg}$ of dry air.	5	7
XIII			7
	$h_A = 40 \text{ kJ/kg}$		
	The state of the s		
	h ₂ =62.3 kJ/kg		
	$h_1 = 22.7 \text{ kJ/kg}$		
	the heat gain in the space.		
	purposes. In commercial buildings, fresh air is introduced to maintain indoor air quality. The temperature and humidity of the outdoor air affect		
	Ventilation Air: Heat gain from the supply of outdoor air for ventilation		
	building materials, insulation levels, and air leakage through the envelope impact the rate of heat transmission.		
	roof, windows, and doors of the building. The thermal characteristics of the		
	Transmission through Building Envelope: Heat gain through the walls,		
	in the space.		
	outdoor air along with its temperature and humidity, affecting the heat gain		
	space through cracks, gaps, or unsealed openings. Infiltration brings in		
	Infiltration: The unintentional flow of outdoor air into the conditioned		
	properties affect the amount of solar heat gain.		
	the building and the presence of external shading devices or glazing		
	especially in spaces with large windows or poor shading. The orientation of		
	or other openings. Solar radiation can significantly contribute to heat gain,		

	From psychrometric chart , corresponding to initial condition, Specific volume at entry, V_{s1} = 0.8267 m³/kg Specific enthalpy at initial condition, h_1 = 35.4 kJ/kg Specific enthalpy at final condition, h_2 = 45.2 kJ/kg			The state of the s
XIV	RH of heated air=41% WBT of heated air=16.1	2	7	
	Mass flow of air at entry, $m = 100 kg$ Ref. effect to be produced, $= \dot{m}(h_1 - h_2) = 100(45.2-35.4)$	3		
	= 980kJ/min	2		