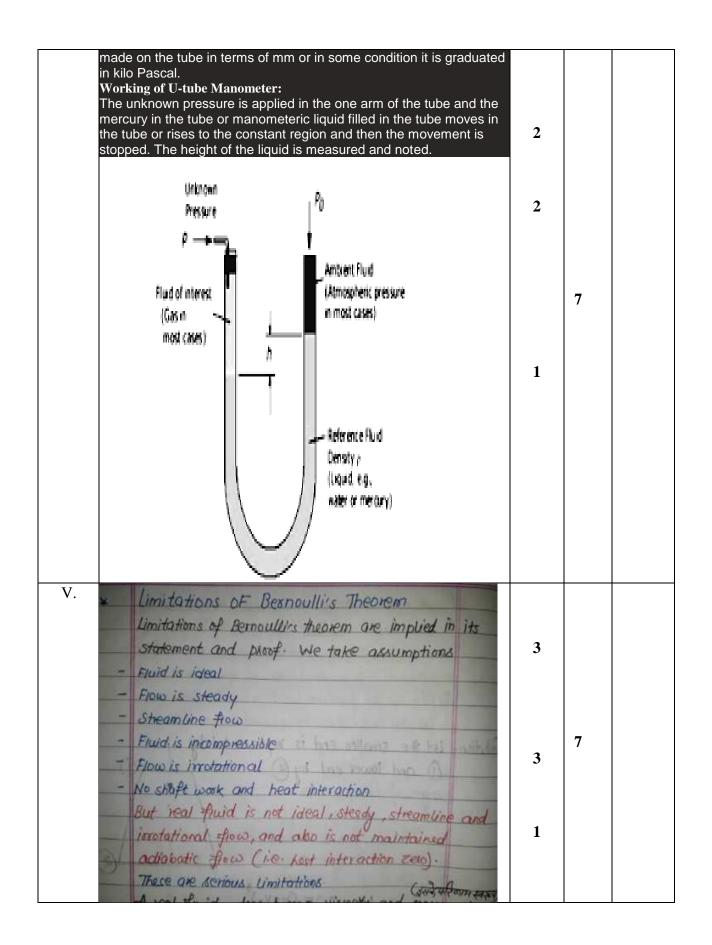
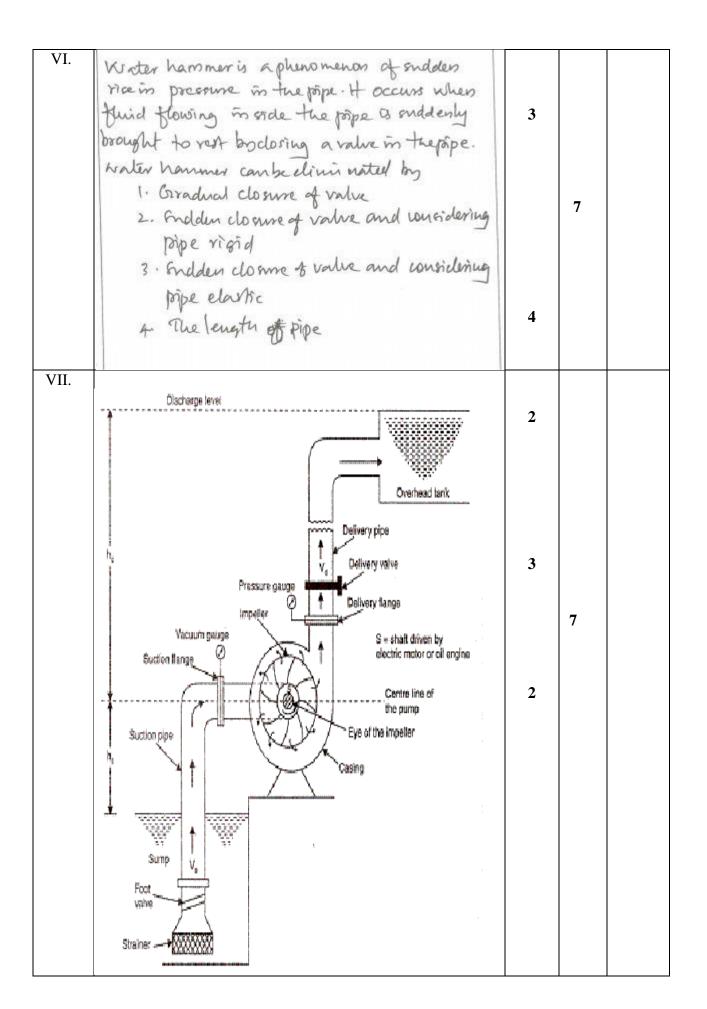
Scoring Indicators model 1

COURSE NAME : MECHANICAL ENGINEERING

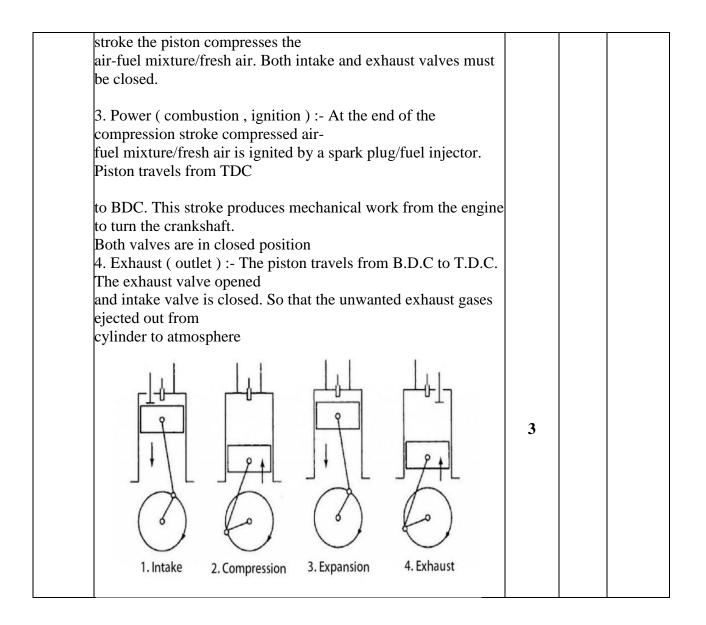
COURSE CODE : 3035

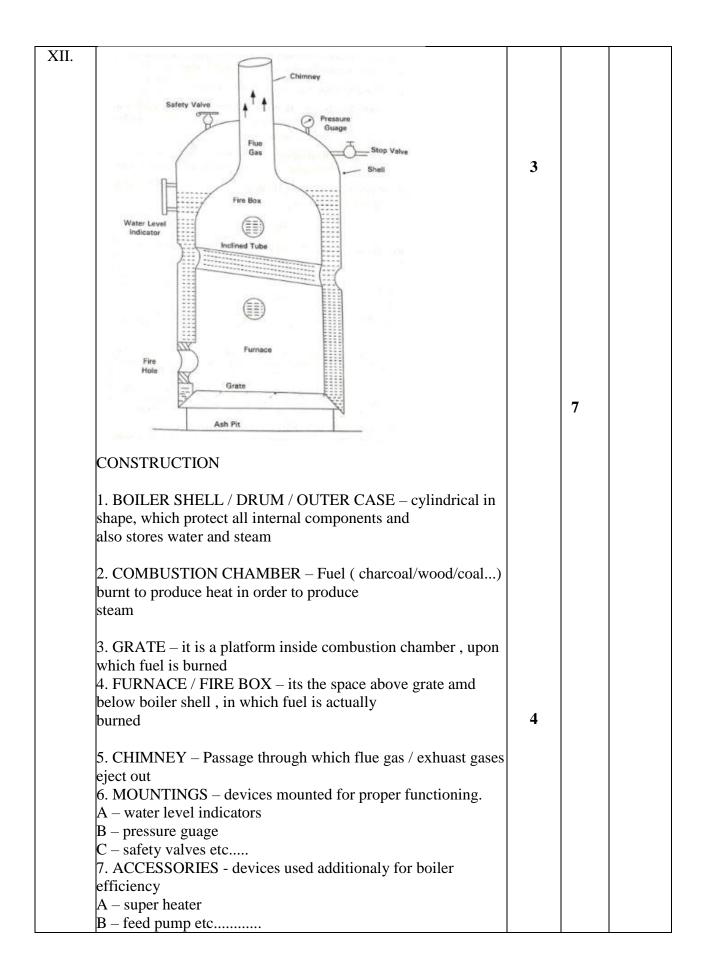

QID :

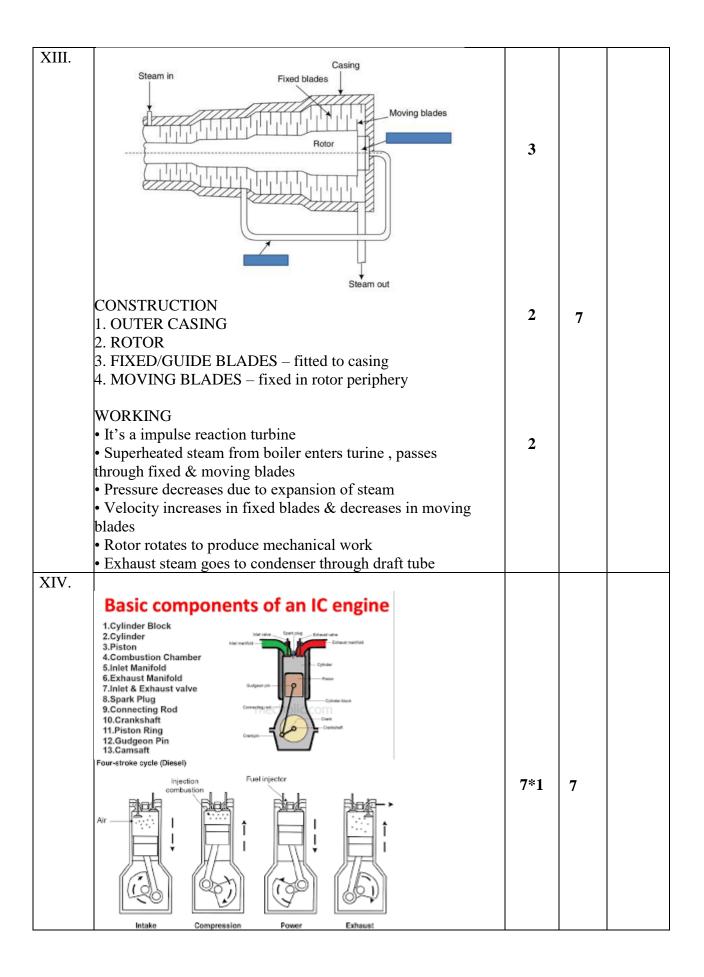

Q No	Scoring Indicators	Splitscore	Sub Total	Total score
	PART A			9
I. 1	Weight density	1	1	
I. 2	Atmospheric pressure and guage pressure	1	1	
I. 3	Density of given liquid to density of standard liquid	1	1	
I. 4	Flow of fluid without changing density	1	1	-
I. 5	Reaction turbine	1	1	-
I. 6	Impulse turbine and reaction turbine	1	1	
I. 7	Steam power plant Steam wash	0.5*2	1	
I. 8	Distance travel by piston	1	1	-
I. 9	Two stroke	1	1	
	PART B			24
II. 1	Pressure measured by gauge			
	Pressure below atmospheric pressure	3	3	
	Absolute pressure is the sum of atmospheric pressure and gauge pressure	-	-	
II. 2	P = p g h	1	3	
	= 0.4*1000 * 9.81 * 30			
	= 117,720	2		
II. 3	1. Uniform flow: The flow of a fluid is steady if its velocity,			
	pressure and all the numerical values relating to its			
	substance (e.g. density and viscosity) are independent of			
	time at every point in the flow field.			
	2. Rotational flow: laminar flow, also called streamline	3	3	
	flow, type of fluid (gas or liquid) flow in which the fluid			
	travels smoothly or in regular paths.			
	3. Compressible flow: turbulent flow, type of fluid (gas or			

	liquid) flow in which the fluid undergoes irregular fluctuations, or mixing			
II. 4	Diameter of pipe, d $= 200 \text{ mm} = 0.2 \text{ m}$ Length of pipe, l $= 60 \text{ m}$ Velocity of flow, v $= 2.5 \text{ m/s}$ Friction factor, f $= 0.005$ Chezy's constant, C $= 55$	1	3	
	By using Darcy's formula Head lost due to friction, $h_{f} = \frac{4 f l v^2}{2 g d}$	1		
	$= \frac{4 \times 0.005 \times 60 \times (2.5)^{2}}{2 \times 9.81 \times 0.2}$ = 1.911 m of water (Ans)	1		
II. 5	AIR VESSEL Closed vessel that stores compressed air	1.5		
			3	
	HYDRAULIC EFFICIENCY Its defined as power developed by turbine due to its running	1.5		
II. 6	N = 900 RPM $H = 10M$	1		
	P = 30KW		3	
	NS = N P / (H ^ 5/4) = 21000 / 17.78 = 1181.1 RPM	2		
II. 7	Head Reservoir DAM Water flow Gate Pressure tunnel Surge Transformer Flectric generator Water flow raotes shaft Turbine Inlet valve	3	3	

II. 8	STEAM BOILER			
	• Water surrounds tubes		3	
	• Less number of parts			
	Slow evaporation			
	• Low steam generation			
	Generate low pressure steam			
	• Low overall efficiency			
	Less maintenance cost	0.5*6		
	Less operation cost			
	• Less skill required to operates the			
	boiler			
	• Used for industrial application			
	• More safe (due to large water			
	content & low steam generation			
II.9	• Thermodynamic cycle used – Otto cycle, diesel cycle,			
	and dual cycle engine	3*1	3	
	• Fuel used – Petrol engine, diesel engine, gas engine, and			
	kerosene oil engine			
	• Number of strokes for completion of cycle - Four-			
	stroke engine and two-stroke engine			


II.10	Comparison of Four-stroke and two-stroke engine:			
	Four-stroke engine Two-stroke engine 1. Four stroke of the piston and two revolution Two stroke of the piston and one			
	of crankshaft revolution of crankshaft 2. One power stroke in every two revolution of One power stroke in each revolution of crankshaft			
	3. Heavier flywheel due to non-uniform Lighter flywheel due to more uniform turning movement			
	4. Power produce is less Theoretically power produce is twice than the four stroke engine for same size			
	 Heavy and bulky Lesser cooling and lubrication requirements Lesser cooling and lubrication requirements 	1.5		
	 Lesser rate of wear and tear Contains valve and valve mechanism Contains ports arrangement 		3	
	10. Volumetric efficiency is more due to greater Volumetric efficiency less due to lesser time of induction time of induction	1.5		
	 Thermal efficiency is high and also part load efficiency better It is used where efficiency is important. Thermal efficiency is low, part load efficiency lesser It is used where efficiency is important. 			
	and light weight are important. Ex-cars, buses, trucks, tractors, industrial engines, aero planes, power generation etc. engines, aero planes, power generation etc.			
	PART C			42
III.		2		
	PROPERTIES OF FLUIDS	-		
		2		
	Density Specific volume Specific weight Specific Gravity Viscosity	2	7	
	Cohesive force Adhesive force Wetting and non wetting fluid Surface tension Capillarity			
	Compressibility	1		
IV.	This manometer consists of a U shaped tube in which the manometeric liquid is filled. The manometer is used to measure the			
	pressure which is unknown by the balancing gravity force and acceleration due to gravity, $g = 9.81$ m/sec2 The manometer consists of a steel, brass and aluminum material. It	2		
	has a glass tube made up of pyralex glass. The graduations are			





VIII.	In <i>Impulse Steam Turbine</i> , there are some fixed nozzles and moving blades are present on a disc mounted on a shaft. Moving blades are in symmetrical order. The steam enters the turbine casing with some pressure. After that, it passes through one or more no. of fixed nozzles into the turbine. The relative velocity of steam at the outlet of the moving blades is same as the inlet to the blades. During Expansion, steam's pressure falls. Due to high-pressure drop in the nozzles the velocity of steam	4		
	increases. In a <i>reaction turbine</i> , nozzles will move on bearing in the opposite direction of the steam flow and the pressure is not constant in this turbine. That's why; a reaction force is always applied on the nozzles and tubes. In this turbine steam produces both impulsive and reactive force. So, the resultant force produces to the rotor is the vector sum of impulsive and reactive force and the reaction force is an unbalanced condition. Generally, this turbine is not used for commercial purpose. Due to this reactive force, it is called reaction turbine.	3	7	
IX.	A reciprocating pump is also known a called a positive displacement pump. Because it discharges a definite quantity of liquid. It is often used where a small quantity of liquid is to be handled and where delivery pressure is quite significant. The following are the main parts of the reciprocating pump.			
	 Cylinder Suction Pipe Delivery Pipe Suction valve Delivery valve Piston and piston rod Crank and connecting rod Strainer Air vessels In this, the water is acting on both sides of the piston as shown in the figure. Thus two suction pipes and two delivery pipes are required for a double-acting pump. When there is a suction stroke on one side of the piston, at the same time there is a delivery stroke on the other side of the piston. 	4	7	
	Hence for one complete revolution of the crank, there is two delivery stroke and the water is delivered to the pipes by the pump during these two delivery			

st	trokes				
	Delivery Piper Di Di Piston Cy Suction Pip Double Acting Rec	D ₃ Piston Rod	3		
	FRANCIS TURBINE Radially inward or mixed flow turbine Medium head turbine Works under medium discharge Horizontal or vertical position shaft Runner vanes not adjustable Larger no of runner vanes Ordinary governors is used Centripetal type Image: State of the state of	KAPLAN TURBINE Axial flow turbine Low head turbine Works under very high discharge Vertical position shaft Runner vanes are adjustable Small no of runner vanes used Heavy duty governors used Propeller type Vetscal divestat Note (adjustable blade)	7*1	7	
XI. (I ⁴ in th in Tl 1. ce de cl fu pr cy	 A four-stroke or four-cycle engine is an internal combustion (IC) engine, in which four individual cycle of operation is completed by two revolution of the crankshaft or four individual strokes of piston The four separate strokes are listed and described below ; 1. suction (Intake , induction) :- piston travels from top dead center (TDC) to bottom dead center (BDC).Intake valve is Open and exhaust valve is closed. piston pulls air- fuel mixture/fresh air into the combustion chamber by producing vacuum pressure in cylinder through its downward motion. 2. Compression: Piston travels from BDC to TDC. In this 			7	

