TED (21) 3033 (Revision-2021)

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ **COMMERCIAL PRACTICE, NOVEMBER - 2024**

FUNDAMENTALS OF ELECTRIC CIRCUITS

[Maximum marks: 75]

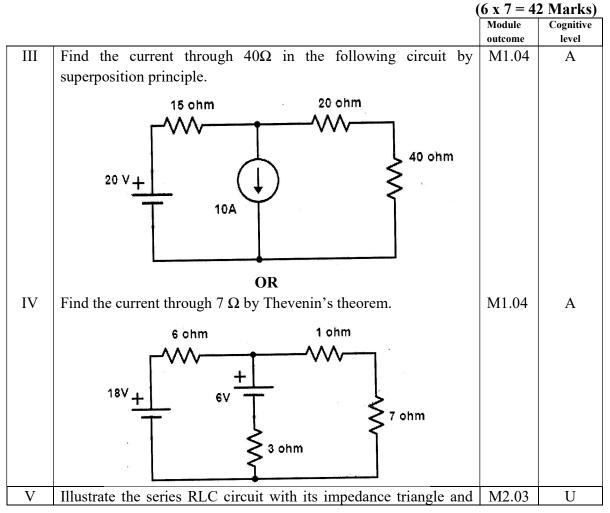
[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		(9 x 1 = 9 Marks)	
_		Module outcome	Cognitive level
1	In super position theorem, while we considering the effect of one	M1.02	R
	voltage source, all other current sources are		
2	Two branches meeting at a point in a circuit is called	M1.02	R
3	Write the polar representation of vectors.	M2.01	R
4	Write the equation of impedance Z for an R-C series circuit.	M2.02	R
5	In parallel resonance condition, the circuit current is	M3.01	R
6	Draw the power triangle.	M3.02	R
7	List methods to solve parallel ac circuits.	M3.02	R
8	Write the relation between line and phase values of Current in	M4.01	R
	delta system.		
9	For a balanced star connected three phase system, neutral current	M4.04	R
	is		

PART B II. Answer any eight questions from the following. Each question carries 3 marks.


		(8 x 3 = 24 Marks)	
		Module outcome	Cognitive level
1	State Maximum power transfer theorem for dc network.	M1.02	R
2	Write the steps to solve a circuit by Thevenin's theorem.	M1.03	U
3	Develop the Norton equivalent of the following circuit and find current through 2 Ω . 10 ohm 10 ohm 15 ohm 10 ohm 2 ohm 10 ohm	M1.04	A

Reg.No..... Signature.....

2110220136A

4	Draw the impedance triangle and define the terms impedance and	M2.03	R
	reactance of RC circuits.		
5	Explain the effect of current and power factor in a series RLC	M2.04	U
	circuit at resonance.		
6	Define Active, reactive and apparent power also write their	M3.01	U
	expression.		
7	Two circuit impedance Z_1 =8-j7 Ω and Z_2 =5+j6 Ω are connected in	M3.03	А
	parallel across a 100V 50Hz supply. Calculate the total current		
	flowing through the circuit.		
8	Define Q-factor of a parallel RLC circuit and obtain its equation	M3.04	U
	also.		
9	Write the expression of three phase voltages and represent by	M4.02	U
	phasor diagram.		
10	List any three advantages of three phase system over single phase	M4.02	U
	system.		

PART C Answer all questions. Each question carries seven marks

	vector diagram. Also write the equation for impedance, current, power factor and power of the RLC circuit.		
3.71		M2 02	T
VI	Draw the vector diagram and impedance triangle of series R-L	M2.03	U
	network and deduce the equation of impedance, current, power factor and power.		
VII	A voltage $v(t) = 141.4 \sin(314t+10^{\circ})$ is applied to a circuit and	M2.01	А
• 11	the steady state current is given by $i(t) = 14.14 \sin (314t-20^{\circ})$ flow	1112.01	1
	through it. Find		
	(i) Power factor of the circuit		
	(i) Power delivered to the circuit		
	(iii) Draw the vector diagram		
	(iii) Draw the vector diagram OR		
VIII	A resistance of 50Ω is in series with a capacitance of $100 \ \mu\text{F}$ and	M2.03	А
V 111	a 100V, 50 Hz supply is applied across it. Calculate	112.03	A
	(i) The current		
	(i) Power factor		
	(ii) The power consumed		
	(iv) Voltage across R and C		
IX	Explain the resonance of a RLC parallel circuit and derive the	M3.02	U
IΛ	expression for parallel resonant frequency.	WI3.02	U
	OR		
Х	Explain the steps to solve a parallel ac circuit by Admittance	M3.02	U
	method.		
XI	A balanced star connected load of 8+j6 ohm per phase is	M4.03	А
	connected to a 3-phase, 230V. Find		
	(i) Line current		
	(ii) Power		
	(iii) Reactive power		
	(iv) Total kVA.		
	OR		
XII	A three phase load of three equal impedance connected in delta,	M4.03	А
	when connected across a balanced 400 V supply takes a line		
	current of 10A at a pf of 0.7 lag. Calculate		
	(i) The phase current		
	(ii) Per phase impedance		
	(iii) Active power		
	(iv) Reactive Power.		
XIII	Explain any 7 comparisons between Star and delta connected	M4.01	U
	three phase system.		
VII	OR Derive the relation between line Voltage and share Voltage in a	M4.02	τī
XIV	Derive the relation between line Voltage and phase Voltage in a three phase Star system.	M4.02	U
	**************************************	1 1	