QID: 2110220128

Set: 2

Scoring Indicators

Paper II

3031 ANALOG & DIGITAL CIRCUITS

Q No	Scoring Indicators	Split score	Sub Tota 1	Tota 1 scor e
	PART A			
I. 1	Negative feedback	1	1	1
I. 2	The oscillator is used in Watches. Oscillators are used in Radio Circuits Oscillators are used smartphones, computer laptops etc. Answer any 2	0.5*2	1	1
I. 3	The ratio of the differential-mode to common-mode gain is called CMRR	1	1	1
I. 4	Inverting amplifier Output voltage=(-Rf/Rin) Vin	0.5*2	1	1
I. 5	1. $\overline{(A+B)} = \overline{A}$. \overline{B} 2. $\overline{(A.B)} = \overline{A} + \overline{B}$	0.5*2	1	1
I. 6	1010 0010 + 1=1010 0011	1	1	1
I. 7	A B AB+C	1	1	1
I. 8	Frequency dividers. Counters. Storage registers. Shift registers Answer any two	0.5*2	1	1

I. 9	D → Q CIK → Plip Flop	1	1	1
	PART B			
II. 1	The above circuit employs a NPN transistor and a PNP transistor connected in push pull configuration. When the input signal is applied, during the positive half cycle of the input signal, the NPN transistor conducts and the PNP transistor cuts off. During the negative half cycle, the NPN transistor cuts off and the PNP transistor conducts	2	3	3
II. 2	Coupling schemes: Transformer coupling, RC coupling and Direct coupling Need for coupling (Answer any 2) 1. To transfer ac output of one stage to the next stage input 2. To isolate the dc conditions of one stage from the next stage 3. To minimize loading effect	2	3	3
II. 3	 The output current flows for the entire cycle of the AC input supply Conduction angle is 360 degree Q point is placed at the midpoint of dc load line No distortion is present Answer any three 	1*3	3	3

II. 4	$v_{in} + \bigotimes_{a} A_{a}$ $v_{out} + \bigotimes_{b} A_{a}$ $v_{out} + \bigotimes_{b} A_{a}$	1.5*2	3	3
II. 5	 Input resistance infinity output resistance zero Open loop voltage gain infinity Bandwidth infinity Slew rate infinity CMRR infinity Answer any three 	1*3	3	3
	+ V _{sat} V _{out}	2		
II. 6	When the input signal is above ground level, the output of the circuit is saturated at its positive extreme. When the input goes below ground level, the output voltage of the circuit immediately switches to its negative saturation level. Every time when the input signal crosses the zero voltage level, the output switches between one saturation level and the other	1	3	3
II. 7	Sinuscidal Input Signal V ₁ Sinuscidal Input Signal V ₂ Output Signal	1.5*2	3	3

II. 8	$V_{\text{in}} = -\text{Rf } C \frac{d}{dt} (V_{\text{in}})$	2	3	3
II. 9	A B NAND NOR 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0	2	3	3
II.10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	3

	1 1 I ₃			
	PART C			
III	The crystal will act as a parallel-tuned circuit. As we can see in this circuit that instead of resonance caused by L and (C1+C2), we have the parallel resonance of the crystal. At parallel resonance, the impedance of the crystal is maximum. This means that there is a maximum voltage drop across C1. This in turn will allow the maximum energy transfer through the feedback network at the parallel resonant frequency fp which is given by: $f_p = \frac{1}{2\pi\sqrt{L}C_T}$ Where,	4	7	7
	$C_T = \frac{C \times C_m}{C + C_m}$ Note that feedback is positive. A phase shift of is produced by the transistor. A further phase shift of is produced by the capacitor voltage divider. This oscillator will oscillate only at fp . Even a small deviation from fp will cause the oscillator to act as an effective short. Consequently, we have an extremely stable oscillator.	3		

V	$I_{in} = I_{f}$ $\frac{(Vin-x)}{Rin} = C. \frac{d(x-V0)}{dt}; x=0$ $\frac{Vin}{Rin} = C. \frac{-d(V0)}{dt}$ $dV0 = \frac{-1}{Rin.c} (Vin. dt)$ Integrating both sides we get $V0 = \frac{-1}{Rin.c} \int Vin dt$	3		
VI	A virtual ground is a node of a circuit that is at a steady reference potential, without being directly connected to the reference potential. It is a concept that is made for easy explanation and calculation purposes as voltage is approximately zero. In the above circuit, as the value of gain is infinity, the differential input to the op amp is zero. Since the voltage at non inverting terminal is zero, voltage at inverting terminal is also equal to zero	3	7	7

	a. $\overline{A \cdot (A + C)} = \overline{A} + \overline{(A + C)}$ $ie = \overline{A} + (\overline{A} \cdot \overline{C})$ $= \overline{A}(1 + \overline{C})$ $= \overline{A}$	3		
VII	b. A + BC Breaking shortest bar (multiplication changes to addition) A + (B + C) Applying associative property to remove parentheses		7	7
	Breaking long bar in two places, between 1st and 2nd terms; between 2nd and 3rd terms Applying identity A = A to B and C	4		
VIII	$(1\ 1100\ 1011.\ 101)_2 = (1\times 2^8) + (1\times 2^7) + (1\times 2^6) + (0\times 2^5) + (0\times 2^4) + (1\times 2^3) + (0\times 2^2) + (1\times 2^1) + (1\times 2^0) + (1\times 2^{-1}) + (0\times 2^{-2}) + (1\times 2^{-3}) = (459.625)_{10}$	7	7	7
IX	Structure of K map Mapping value Grouping Final result $f(A,B,C) = \Sigma m(0,1,2,3,5,7)$ BC A 00 01 1 1 1 1 Y= $\overline{A}+C$	2 1 2 2 2	7	7

	a. 11011 × 101 11011 00000 + 11011 10000111	3	7	7	
X	b. 111010 ÷ 100 = 17 1110.1 100 111010.0 -100 110 -100 101 -100 10.0 -100	4	7	7	
	Synchronous	Asynchromous			
	Synchronous Counter is faster than asynchronous counter in operation	Asynchronous Counter is slower than synchronous counter in operation	,		
XI	In synchronous counter, all flip flops are triggered with same clock simultaneously		7	7	
	Synchronous Counter does not produce any decoding errors	Asynchronous Counter produces decoding error			

	Synchronous Counter is also called Parallel Counter	Asynchronous Counter is also called Serial Counter			
	Synchronous Counter designing as well implementation are complex due to increasing the number of states	Asynchronous Counter designing as well as implementation is very easy			
	Synchronous Counter will operate in any desired count sequence.	Asynchronous Counter will operate only in fixed count sequence (UP/DOWN)			
	Synchronous Counter examples are: Ring counter, Johnson counter	Asynchronous Counter examples are: Ripple UP counter, Ripple DOWN counter			
	In synchronous counter, propagation delay is less	In asynchronous counter, there is high propagation delay			
	Clock	DAC Ref. Voltage Counter Display Reset / Start	4		
XII	These are: (1) the analog (sawtooth) voltage from the output is initiated each time a signal also resets the countercircuit. As long as the analog comparator differ in magnitude.	e comparator in the figure above. input, and (2) a linear ramp ramp generator. The generator a start signal is applied. The start er to zero and enables the gate and ramp generator inputs to the de, the clock pulse generator will		7	7
	through the gate into the cou	lses at a constant repetition rate unter. When the two inputs to the as a result of the linearly rising	3		

	disable The d clock accum	oth) the esthe gat isabled g pulse genulated in portional t	3						
		J⊗—			≎Q				
	a.	$\begin{array}{c c} & J-K \\ \hline & Flip-Flop \\ \hline & & \overline{Q} \\ \hline & a. & \\ \hline & &$							
XIII		J 0	K ·	Q .	Qn+1 0	Remarks No change		7	7
		0	1	0	0	Reset		,	,
		1	0	0	1	Set			
		1	1	0	1	Toggle			
	·	0	0	1	1	No change			
		0	1	1	0	Reset			
		1	0	1	1	Set			
		1	1	1	0	Toggle			

	b.	\(\overline{\subsets} \)	F	k Flip- lop	—∘Q —⊸⊙Q					
		S	R		Q	Qn+1	Remarks			
		0	0		1	1	Invalid			
		0	1		0	0	Reset			
		1	0		0	1	Set			
		1	1		0	0	No change			
		0	0		1	Ţ	Invalid			
		0	1		1	0	Reset			
		1	0		1	1 .	Set			
		1	1		1	1	No change			
XIV	0 0 1 1	Inputs E 0 1 C 1 B + $A\overline{B}$ =)	Out Diff 0 1 1 0	Diff Output Borrow 0 1 0 0			2	7	7
	POLLOM	= A B						2		

