2110220128

Reg.No	•••	•••	•••	•••	•••	•••	•	•	•••	•	•	•••	•	•	•••
Signature				•				•			•		•	•••	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2024

ANALOG AND DIGITAL CIRCUITS

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		(9 x 1 = 9 Marks)		
		Module	Cognitive	
		outcome	level	
1	The feedback mechanism in which the feedback signal opposes	M1.02	R	
	the input signal is called feedback.			
2	List any two applications of oscillators.	M1.04	R	
3	Define CMRR of an op-amp.	M2.01	R	
4	Identify the circuit given below and write its output expression.	M2.02	А	
	$V_{in} \sim V_{in} \sim V_{out}$			
5	State the mathematical expressions of De Morgan's theorems in	M3.03	R	
	Boolean algebra.			
6	Write 2's complement representation of $(0101 \ 1101)_2$	M3.01	A	
7	Implement the logical expression $Y = AB + C$ using basic logical	M3.02	A	
	gates.			
8	List any two applications of flip flops.	M4.02	R	
9	Show the circuit symbol of D flip flop.	M4.02	R	

PART B II. Answer any eight questions from the following. Each question carries 3 marks.

		$(8 \times 3 = 24 \text{ Mark})$		
		Module	Cognitive	
		outcome	level	
1	Illustrate the operation of complementary symmetry push pull	M1.01	U	
	amplifier.			
2	List different types of coupling schemes in transistor amplifier	M1.01	R	
	circuits and state their importance.			
3	List the characteristics of class A power amplifier.	M1.01	R	
4	Show the block diagrams of positive and negative feedbacks in	M1.02	R	
	amplifier circuits.			
5	State the characteristics of ideal op-amp.	M2.01	R	

6	Illustrate the working of zero crossing detector.	M2.03	U
7	Draw the circuit diagram and waveforms of half wave precision	M2.04	R
	rectifier.		
8	Draw a differentiator circuit using an op-amp and write its output	M2.03	R
	equation.		
9	Draw the symbols of universal gates and write their truth tables.	M3.02	R
10	Show the truth table and block schematic representation of a $4x1$	M4.01	R
	multiplexer.		

PART C Answer all questions. Each question carries seven marks ($6 \ge 7 = 42$ Marks)

		Module outcome	Cognitive level
III	Illustrate the working of a crystal oscillator.	M1.03	U
	OR		
IV	Explain the operation of astable multivibrator with a neat	M1.04	U
	diagram.		
V	Explain op-amp as Integrator. Derive the expression for output	M2.03	U
	voltage.		
	OR		
VI	Outline the concept of virtual ground in op amp circuits with the	M2.01	U
	help of a neat diagram.		
VII	Apply De Morgan's theorem to find the solution of the following	M3.03	А
	logical expressions.		
	(a) $Y = \overline{A.(A+C)}$		
	(b) $Y = \overline{A + \overline{BC}}$		
	OR		
VIII	Convert the binary number $(1\ 1100\ 1011\ .\ 101)_{10}$ to its equivalent	M3.02	А
	decimal number.		
IX	Using K map, minimize the following Boolean function	M3.04	А
	$f(A, B, C) = \sum m(0, 1, 2, 3, 5, 7)$		
N	OR 1	1001	
X	Perform the following operations of binary numbers. (a) $(11011)_{y}(101)$	M3.01	А
	(a) $(11011)x(101)$ (b) $(111010) \div (100)$		
XI	Compare synchronous and asynchronous counters.	M4.02	U
	OR	-	
XII	Explain the operation of ramp type ADC with a neat diagram.	M4.04	U
XIII	Illustrate the following flipflops with their symbolic	M4.04	U
	representations and truth Table.		
	(a) JK flipflop		
	(b) SR flipflop		
	OR		
XIV	Construct a half subtractor from its truth table using basic logic	M4.01	U
	gates.		