Scoring Indicators

COURSE NAME : Data Structures

COURSE CODE : 3343 QID :2109240124
PART A '
L Answer all the following questions in one word or sentence.
(9 x 1 =9 Marks)
Max. marks
. . Split Sub | Total
Q.No Scoring Indicators score | Total | score
PART A 9
An Abstract Data Type in data structure is a kind of a data type
1.1 | whose behaviour is defined with the help of some attributes and 1 1
some functions.
12 | Pointer 1 1
L3 | The sequence of popped values is: 2,2, 1,1, 2. 1 1
Two fields or parts of a node in a singly linked list are:
[.4 | 1. Data Field: This part stores the value or data 0.5x2 1
2. Next Pointer: This part points to the next node in list
The primary operations in a queue data structure are:
Ls 1. Enqueue: Add an element to the rear (end) of the queue. 0 55(2 1
' 2. Dequeue: Remove and return the front element from the ’ ‘
queue.
*
/\
L6 + ¢ 1 1
/\
ab
The degree of a tree refers to the maximum number of
17 . . 1 1
children that any node in the tree has.
A path in a graph is a sequence of vertices where each adjacent
pair of vertices is connected by an edge. The path length is the
1.8 | number of edges in the path. It is equal to the number of edges 0.5x2 1
you traverse to go from the starting vertex to the ending vertex in
the path.
. A complete graph is a type of graph in which every pair of distinct
1.9 o . 1 1
vertices is connected by a unique edge.
PARTB 24
struct Student {
char name[50]; // To store student name
II.1 int reg_no; // To store register number 3 3
float marks; /1 To store marks
¥.
i

Linear Data Structures
o Definition: Elements are arranged in a sequential order,
where each element is connected to its previous and next
element in a single line.
« Examples: Arrays, Linked Lists, Stacks, Queues.
Non-Linear Data Structures
» Definition: Elements are arranged in a hierarchical or
interconnected manner, not in a sequential order. ‘
« Examples: Trees (Binary Trees, AVL Trees), Graphs.

1.5x2

LI

I1.3

1. Algorithm to Check if the Stack is Empty:
Step 1: Start
Step 2: If top == -1, the stack is empty.
Step 3: Otherwise, the stack is not empty.
Step 4: End

2. Algorithm to Check if the Stack is Full:
Step 1: Start
Step 2: If top == MAX - 1, the stack is full.
Step 3: Otherwise, the stack is not full.
Step 4: End

1.5x2

1.4

1. Initialize a pointer current to point to the head of the linked list.
2. While current is not NULL: ;

o Print the data of the current node.

+ Move current to the next node.
. End the loop when current becomes NULL.

1x3

IL5

. Begin
frear=MAX - 1.
a. Print "Queue is full" (Overflow condition)
b. Exit
3. Else:
a. If front == -1:
i. Set front = 0 // Queue was empty, so reset front
b. Increment rear by 1 (rear = rear + 1)
c. Insert the element at queue[rear]
4. End

B e U2

[¥5)

116

¢ Dynamic Size:

s Linked lists can grow and shrink dynamica
arrays have a fixed size.

o Efficient Insertion and Deletion:

« Inserting or deleting elements in a linked list (especially at
the beginning or middle) is faster, as it only involves
updating pointers. Arrays require shifting elements, which
is slower.

¢ No Pre-Allocation:

o Linked lists allocate memory as needed, reducing wasted
space. Arrays allocate a fixed block of memory, which
may lead to unused space.

(5]

o 9 -

 Non-Contiguous Memory Allocation:
 Linked lists can use scattered memory locations, making
them easier to manage in fragmented memory
environments. Arrays require contiguous memory blocks.

1.7

Function InorderTraversal(node):
If node is not NULL:
InorderTraversal(node.left) // Visit left subtree
Process(node) /1 Visit the root node (e.g., print node data)
InorderTraversal(node.right) // Visit right subtree

(%]

1.8

The height of a tree is the length of the longest path from the root
node to a leaf node. It represents the number of edges in the longest
path from the root to any leaf

The depth of a node in a tree is the number of edges from the root
node to that specific node. It measures how far a particular node is
from the root of the tree.

1.5x2

119

1.5x2

110

Warshall’s Algorithm is used to find the transitive closure of a
directed graph. In other words, it helps determine if there is a path
between any pair of vertices in the graph.

The algorithm is often used for all-pairs shortest path in weighted
graphs, but Warshall’s original focus was on unweighted graphs
(i.e., path existence)..

142

3. Qutput The final 2d)

vartex 1 to vartex j (either divectly or through other vertices)

PART C

42

11

(29] ») (¥} S5
o g s iz}

¥ 13 ¥ 1 1] +
4

S BB P

[] e] el] fuced

P 4 ¥ ¥ 1

Y &) Y £

L B v

£
o
s
+
iy
!
;

Step 1 : Scan the Infix Expression from left to right.

Step 2 : If the scanned character is an operand, append it

with final Infix to Postfix string.

Step 3 : Else,

Step 3.1 : If the precedence order of the scanned(incoming)
operator is greater than the precedence order of the operator in the
stack (or the stack is empty or the stack contains a ‘(* or ‘[* or *{*),
push it on stack.

Step 3.2 : Else, Pop all the operators from the stack which are
greater than or equal to in precedence than that of the scanned
operator.

Step 4 : If the scanned character is an ‘(* or ‘[or *{*, push it to the
stack.

Step 5 : If the scanned character is an)"or ‘] or *}’, pop the stack
and output it until a *(‘ or *[* or ‘{* respectively is encountered, and
discard both the parenthesis.

3+4

- AT

Step 6 : Repeat steps 2-6 until infix expression is scanned.
Step 7 : Print the output
Step 8 : Pop &output from the stack until it is not empty.

IV

A stack is a linear data structure that follows the Last In, First
Out (LIFO) principle.

function PUSH(stack, element):
if top == MAX - 1:
return "Stack Overflow”
top =top + 1
stack[top] = element

function POP(stack):
if top == -1:
return "Stack Underflow"
element = stack[top]
top=top- 1
return element

// Structure definition for a linked list node
struct Node {

int data;

struct Node* next;

3

// Function to search for an element in the linked list
function searchElement(head, key):
current = head // Initialize current pointer to head

// Traverse the linked list
while current is not NULL:
if current->data == key:
print "Element found."
return // Exit the function

current = current->next // Move to the next node

print "Element not found." // Element is not in the list

Progra
m; 5

VI

function bubbleSort(A, N):
for 1 from 0 to N-1 do:
for j from O to N-i-2 do:
if A[j] > A[j + 1] then:

// Swap A[j] and A[j + 1]
temp = A[j]
Afji=A+ 1]
Afj+ 1] =temp

Progra
m:7

VII

Pseudocode for Inserting at the Front
function insertAtFront(head, newData):
// Step 1: Create a new node

[22

newNode = createNode(newData)

// Step 2: Point new node to current head
newNode.next = head

// Step 3: Update head to point to new node
head = newNode

return head // Return new head

Pseudocode for Inserting at the Back
FUNCTION insertAtBack(head, data):
new_node = CREATE Node
new_node.data = data
IF head IS NULL THEN
head = new_node
ELSE
current = head
WHILE current.next IS NOT NULL DO
current = current.next
END WHILE
current.next = new_node
END IF
END FUNCTION

VIII

function BinarySearch(arr, target):
low =0
high = length(arr) - 1
while low <= high:
mid = (low + high) // 2 // Find the middle index
if arr[mid] == target:
return mid // Target found
else if arrmid] < target:
low =mid + 1 // Search right half
else:
high = mid - 1 // Search left half
return -1 // Target not found

245

IX

50
/\
25 70
/N A
10 3060 80
Function Insert(root, key):
If root is NULL:
Create a new node with the key and return 1t

3+4

If key < root.value:
root.left = Insert(root.left, key) // Recur for left subtree

Else if key > root.value:
root.right = Insert(root.right, key) / Recur for right subtree

Return root

Function PostorderTraversal(node):
If node is not NULL:
PostorderTraversal(node.left) // Visit left subtree
PostorderTraversal(node.right) // Visit right subtree
Process(node) /f Visit the root node (e.g., print
node data)

3+4

XI

Binary Tree:A tree where each node has at most two children, referred
to as the left and right child.
Binary Search Tree (BST):

e Definition: A binary tree where the left child of a node contains
values less than the node, and the right child contains values
greater than the node.

Full Binary Tree:

¢ Definition: A binary tree in which every node has either 0 or 2

children.
Complete Binary Tree:

¢ Definition: A binary tree where all 1evels are completely filled

except possibly for the last, which is filled from left to right.

2x3

X1

In linked representation, the binary tree is stored inthe 1 memory, in
the form of a linked list where the number of nodes are stored at
noncontiguous memory locations and linked together by inheriting
parent child relationship like a tree.

m Every node contains three parts : pointer to the left node, data
element and puiﬂwf to the I’ight node.

m Each binary tree has a root pointer which points to the root node
of the binary tree.

m In an empty binary tree, the root pointer will point to null.

(XoHixX

X1

Two different ways of representing a graph in data structure are
the Adjacency Matrix and Adjacency List.

An adjacency matrix is a 2D array in which each cell represents
the presence or absence of an edge between two vertices. Ifan edge
exists from vertex i to vertex j, the cell (i, j) contains a non-zero
value (often 1); otherwise, it includes 0.

~J

Directed Graph Representation

5

An adjacency list is a collection of linked lists or arrays, each

CLpAVRAIV) 1300 22 4 WRUAILAAIRAES

representing a vertex in the graph. Each element in the list/array

stores the adjacent vertices of the corresponding vertex.
Directed Graph Representation

XIV

Depth First Search (DFS) is an algorithm used for traversing or
searching through tree or graph data structures. The idea is to
explore as far as possible along each branch before backtracking.

Steps in DFS: ;
1. Start from the root (or an arbitrary node in the case of a
graph).

2. Visit the node and mark it as visited.

3. Recursively visit all adjacent unvisited nodes.

4. Backtrack when no more unvisited nodes are found.
DFS can be implemented ¢ither recursively or iteratively using a
stack.

