2109230387A

Reg.No	••••	•••	 •••	•	•••	•	•••	•	•••	•	•
Signature			 •••	•		•		•		•	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2024

LOGIC SYSTEM DESIGN & COMPUTER ORGANIZATION

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark.

		(9 x 1 = 9 Marks)		
		Module outcome	Cognitive level	
1	How to find 2's complement of a number?	M1.03	U	
2	What are the rules for binary addition?	M1.04	R	
3	$\overline{A+B} = \dots$	M2.02	R	
4	Give examples of sequential circuits.	M2.06	U	
5	Name the universal gates.	M2.06	R	
6	Name the functional units of a computer.	M3.01	R	
7	Define the types of system bus.	M3.03	R	
8	Name the methods to generate control signals.	M4.03	R	
9	Define Flynn's classification.	M4.05	R	

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

		$(8 \times 3 = 24 \text{ Marks})$		
		Module outcome	Cognitive level	
1	Convert 102_{10} to binary.	M1.01	А	
2	Explain NAND gate.	M1.05	U	
3	Give examples for alpha numeric codes.	M1.02	U	
4	Explain NOR gate.	M2.01	U	
5	Prepare notes on Half Adder.	M2.05	U	
6	Give examples for SOP & POS.	M2.03	U	
7	Draw the memory hierarchy based on processor speed.	M3.04	U	
8	Explain the concept of DMA.	M3.06	U	
9	What is instruction pipelining?	M4.04	U	
10	Compare Hardwired and microprogrammed control signal generation.	M4.03	U	

PART C Answer all questions. Each question carries seven marks.

		$(6 \times 7 = 42 \text{ Marks})$	
		Module outcome	Cognitive level
III	Convert (i) 0xABC to Binary (ii) 123 ₈ to Hex numbers.	M1.01	А
	OR		
IV	Convert (i) 10110.011_2 to Decimal (ii) 53.43_{10} to Binary numbers	M1.01	А
V	Prepare notes on Logic gates.	M1.05	U
	OR		
VI	What are the different types of binary codes? Explain.	M1.02	U
VII	Reduce the Boolean expression using K-MAP,	M2.04	А
	$\mathbf{Y} = \bar{A}BC + ABC + \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}C$		
	OR		
VIII	Find the Boolean expression for $Y = \sum (0,13,5,6,7)$.	M2.03	А
IX	Explain the basic theorems of Boolean algebra.	M2.02	U
	OR		
Х	Compare Combinational circuits & Sequential circuits.	M2.06	U
XI	Explain basic operational concepts of a computer system.	M3.02	U
	OR		
XII	Write notes on program controlled and interrupt driven IO.	M3.05	U
XIII	Explain instruction pipelining in detail.	M4.04	U
	OR		
XIV	Explain Von-Neumann architecture of computers.	M4.01	U
