2109230389

Reg. No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2024

DISCRETE MATHEMATICS

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer '*all*' the following questions in one word or one sentence. Each question carries '*one*' mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks) Cognitive level
1.	If A has n elements then number of subsets of A =	M1.01	R
2.	If p is a proposition \neg (\neg p) =	M1.03	U
3.	$nP_{n} = \dots$	M2.02	U
4.	If $ A = m$ and $ B = n$ then $n(AxB) = \dots$	M2.02	R
5.	If $f:A \rightarrow B$ is a function from A to B then A is called	M2.03	R
6.	A vertex which is not adjacent to every other vertex is called	M3.02	R
7.	A graph with p vertices and q edges is called	M3.02	R
8.	Every cyclic group is	M4.01	R
9.	Every subgroup of a cyclic group is	M4.01	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks. (8 x 3 = 24 Marks)

Module Outcome Cognitive level Find AUB and A \cap B if A={2,4,7,8} and B={4,5,6,7}. U 1. M1.01 Determine the truth value of conjunction table. U 2. M1.03 3. Write all subsets $A = \{1, 2, 3\}$. M1.01 U 4. Find the number of permutations of the letters of the word M2.02 U INDEPENDENCE. Let f:R \rightarrow R where f(x)=3x+7 for all x \in R. Prove that f is one-one. U 5. M2.03 How many edges are there in a graph with 10 vertices each of 6. M3.02 А degree 6? Define trees and spanning trees. M3.03 7. R M3.03 U 8. Define pre-order traversal. U 9. Define (i) semigroup (ii) monoid M4.01 10. Let $A=\{a, b\}$. Draw the Hasse diagram of $(p(A), \subseteq)$ and check whether M4.02 U it is a lattice.

PART-C

Answer '*all*' questions from the following. Each question carries '*seven*' marks. ($5 \times 7 = 42$ Marks)

		$(6 \times 7 = 42)$	Marks)
III.	Draw appropriate Venn diagram for each of the following.	M1.01	A
	(i) $(A \cup B)^1$ (ii) $A^1 \cap B^1$		
	OR		
IV.	If A and B are two sets such that A \cup B has 50 elements. A has 28	M1.01	Α
	elements and B has 32 elements. How many elements does $A \cup B$		
	have?		
V.	Construct truth table for the compound statement \neg ($_{p}v_{q}) \rightarrow \neg p$.	M1.03	U
	OR		
VI.	Use truth table $-(n \rightarrow a) \rightarrow -a$ is a logical implication	M1.03	U
VII	Use that table $(p \rightarrow q) \rightarrow (q \text{ is a logical implication.})$	M1.02	U U
V 11.	Let * be a binary operation on the set N of natural numbers defined	M1.02	U
	by the rule $a^*b = ab/4$ for all $a, b \in N$. Is * a) Commutative		
	b) Associative.		
	OR		
VIII.	Show that the function $f:N \rightarrow N$ given by $f(x)=2x$, is one -one and	M2.03	U
	onto.		
IX.	An undirected graph has an even number of vertices of odd degree.	M3.02	U
	OR		
Х.	Show that the size of every graph of order n is at most $n(n-1)/2$?	M3.02	U
XI.	Prove that every connected graph G has a spanning tree?	M3.03	U
	OR		
XII.	Prove that the sum of degree of all vertices in G equal to twice the	M3.02	U
	number of edges.		
XIII.	Show that $A = \{1, -1, i, -I\}$ is a group under multiplication.	M4.01	U
	OR		
XIV.	Show that the set of integers under addition is a group.	M4.01	U
		1	1
