Scheme of Evaluation

(Scoring Indicators)

QID 2112230504

Course Code: 1003

Course Name: Applied Physics I

Revision: 2021

Q. No	Scoring Indicators	Split score	Sub	Total
			Total	Score
I	Part A			9
1	unit	1	1	
2	rad/s	1	1	
3	$\frac{2}{5}MR^2$	1	1	
4	negative	1	1	
5	electrical energy	1	1	
6	radiation	1	1	
7	compressibility	1	1	
8	hpg	1	1	
9	terminal velocity	1	1	
П	Part B	1	1	24
1	Any six fundamental quantities	(a. 5 a 1.5		
	Units	1.5	3	
2	Statement	1.5		
	Derivation of F = ma	1.5	3	
3	Ice melts – MI increases	1		
	Conserve angular momentum (L = $I\omega$)	1		
	$\boldsymbol{\omega}$ decreases and duration of day increases	1	3	
4	Derivation of $v = r\omega$	3	3	
5	Any three laws	3	3	
6	Definition	1		
	Equation	1		
	SI unit (watt)	1	3	
7	Metals are good conductor of heat	1.5		
	Wood is bad conductor of heat	1.5	3	
8	Gauge pressure – pressure with respect to	1		
	atmosphere			
	Absolute pressure – pressure with respect to absolute	1		
	vacuum		3	
	Equations	1		
9	Formula	2		
	Different parameters	1	3	
10	Three differences	3	3	
	Part C			42
III	Mean = 2.86	2		
	Absolute errors – 0.08, 0.04, 0.06 and 0.01	2		

	Mean absolute error – 0.05	1		
	Relative error – 0.017	1	1	
		1	7	
IV	Percentage error – 1.7 %	1	_	
1 V	Figure of collision case	3	Ì	
	Equations for F ₁₂ and F ₂₁ using Newton's second law	2	7	
	F ₁₂ = - F ₂₁ (using third law)	1		
77	Momentum Conservation equation			
V	(a) explanation	2		
	(b) figure	1 4	7	
***	Derivation of $\theta = \tan^{-1}(v^2/rg)$		'	
VI	(a) explanation	1		
	(b) statement of parallel axis theorem	2		
	Figure and equation	1	Ì	
	Statement of perpendicular axes theorem	2 1	7	
	Figure and equation			
VII	(a) Definition	2		
	Two examples	1		
	(b) statement	2		
	Figure and equations	2	7	
VIII	$m = 5 \text{ kg}, R = 2m, \omega = 60 \text{ rpm} = 1 \text{ rps}$	1		
	$T = mR\omega^2$	2		
	On substituting $T = 10 \text{ N}$	4	7	
IX	Freely falling case – figure	1		
	Three positions PE, KE, TE derivations	2 each (6)	7	
X	Mercury thermometer - figure	1		
	Working	2		
	Pyrometer - figure	1	7	
	Working	2		
	Applications of pyrometer	1		
XI	Name of three moduli	1 each (3)		
	Definitions with equations	4	7	
XII	$d_1 = 15$ cm, $r_1 = 7.5$ cm, $d_2 = 7$ cm, $r_2 = 3.5$ cm,	1		
	$v_1 = 5 \text{ m/s}, v_2 = ?$			
	$a_1v_1 = a_2v_2$; $\pi r_1^2 v_1 = \pi r_2^2 v_2$	2		
	On substituting $v_2 = 23 \text{ m/s}$	4	7	
XIII	$m=100 \text{ kg}, h=10m, t=5 \text{ s}, \eta=0.6, P=?$	1		
	$P_{out} = W/t = mgh /t = 1960 W$	4		
	$\eta = P_{\text{out}}/P_{\text{in}}$; $P_{\text{in}} = P_{\text{out}}/\eta = 3267W$	2	7	
XIV	Statement	2		
	Equation	2		
	Any one application	3	7	